5,548 research outputs found
Nucleon-Nucleon Correlations in Electromagnetically Induced Knockout Reactions
The attempts to investigate correlations in electromagnetically induced one-
and two-nucleon knockout are reviewed. The theoretical framework for cross
section calculations is outlined and some results are presented for the
exclusive O(N and O(C reactions. For
the () reaction attention is focussed on extracting the spectroscopic
factors. For the () reaction the possibility of obtaining direct and
clear information on short-range correlations is discussed.Comment: 20 pages, 4 figures, contribution to the XIV International School on
Nuclear Physics, Neutron Physics and Nuclear Energy, Varna, September 25 -30,
200
Proton recoil polarization in exclusive (e,e'pp) reactions
The general formalism of nucleon recoil polarization in the () reaction is given. Numerical predictions are presented for the
components of the outgoing proton polarization and of the polarization transfer
coefficient in the specific case of the exclusive O()C knockout reaction leading to discrete states in the residual
nucleus. Reaction calculations are performed in a direct knockout framework
where final-state interactions and one-body and two-body currents are included.
The two-nucleon overlap integrals are obtained from a calculation of the
two-proton spectral function of O where long-range and short-range
correlations are consistently included. The comparison of results obtained in
different kinematics confirms that resolution of different final states in the
O()C reaction may act as a filter to
disentangle and separately investigate the reaction processes due to
short-range correlations and two-body currents and indicates that measurements
of the components of the outgoing proton polarization may offer good
opportunities to study short-range correlations.Comment: 12 pages, 6 figure
Electromagnetic proton-neutron knockout off 16O: new achievements in theory
Results for the cross sections of the exclusive 16O(e,e'pn)14N and
16O(gamma,pn)14N knockout reactions are presented and discussed in different
kinematics. In comparison with earlier work, a complete treatment of the
center-of-mass (CM) effects in the nuclear one-body current is considered in
connection with the problem of the lack of orthogonality between initial bound
and final scattering states. The effects due to CM and orthogonalization are
investigated in combination with different treatments of correlations in the
two-nucleon overlap function and for different parametrizations of the two-body
currents. The CM effects lead in super-parallel kinematics to a dramatic
increase of the 16O(e,e'pn) cross section to the 1_2^+ excited state (3.95 MeV)
of 14N. In all the situations considered the results are very sensitive to the
treatment of correlations. A crucial role is played by tensor correlations, but
also the contribution of long-range correlations is important.Comment: 13 pages, 10 figure
Photon-induced two-nucleon knockout reactions to discrete final states
Cross sections and photon asymmetries of the exclusive 16O(\gamma,pn)14N and
16O(\gamma,pp)14C knockout reactions are calculated for transitions to the
low-lying discrete final states of the residual nucleus in the photon-energy
range between 100 and 400 MeV. Exclusive reactions may represent a test of
reaction mechanisms and a promising tool for investigating the dynamics of
nucleon pairs in different states. Cross sections and asymmetries for both
(\gamma,pn) and (\gamma,pp) turn out to be only slightly affected by
short-range correlations and dominated by two-body currents. Therefore,
two-nucleon knockout reactions induced by real photons appear well suited to
investigate the nuclear current and the selectivity of individual transitions
to its different components.Comment: 21 pages, 16 postscript figure
Correlation functions at small quark masses with overlap fermions
We report on recent work on the determination of low-energy constants
describing Delta{S}=1 weak transitions, in order to investigate the origins of
the Delta{I}=1/2 rule. We focus on numerical techniques designed to enhance the
statistical signal in three-point correlation functions computed with overlap
fermions near the chiral limit.Comment: Talk presented at Lattice2004(weak), Fermilab, 21-26 June 2004, 3
pages, 2 figure
Charge-Exchange and multi-scattering effects in (e,e'n) knockout
Final-state interactions in (e,e'n) knockout reactions in the quasi-free
region are studied by considering the multistep direct scattering of the
ejectile nucleon. Primary and multiple particle emission are included within
the same model and are found to become important with increasing excitation
energy. Charge-exchange effects taken into account through the two-step
(e,e'p)(p,n) and three-step (e,e'p)(p,N)(N,n) processes are also found to
increase with energy. A comparison with the results obtained with an
isospin-dependent optical potential at small excitation energies is presented.Comment: 12 pages, 4 Postscript figures. A new section on multiple particle
emission added together with 2 new figures including primary and multiple
emission cross section
NN final-state interaction in two-nucleon knockout from
The influence of the mutual interaction between the two outgoing nucleons
(NN-FSI) in electro- and photoinduced two-nucleon knockout from has
been investigated perturbatively. It turns out that the effect of NN-FSI
depends on the kinematics and on the type of reaction considered. The effect is
generally larger in pp- than in pn-knockout and in electron induced than in
photoinduced reactions.
In superparallel kinematics NN-FSI leads in the channel to a
strong increase of the cross section, that is mainly due to a strong
enhancement of the -current contribution. In pn-emission, however, this
effect is partially cancelled by a destructive interference with the seagull
current. For photoreactions NN-FSI is considerably reduced in superparallel
kinematics and can be practically negligible in specific kinematics.Comment: 16 pages, 9 figure
Optical Potentials Derived from Nucleon-Nucleon Chiral Potentials at N4LO
Background: Elastic scattering is probably the main event in the interactions
of nucleons with nuclei. Even if this process has been extensively studied in
the last years, a consistent description, i.e., starting from microscopic two-
and many-body forces connected by the same symmetries and principles, is still
under development. Purpose: In a previous paper we derived a theoretical
optical potential from NN chiral potentials at fourth order (N3LO). In the
present work we use NN chiral potentials at fifth order (N4LO), with the
purpose to check the convergence and to assess the theoretical errors
associated with the truncation of the chiral expansion in the construction of
an optical potential. Methods: The optical potential is derived as the
first-order term within the spectator expansion of the nonrelativistic multiple
scattering theory and adopting the impulse approximation and the optimum
factorization approximation. Results: The pp and np Wolfenstein amplitudes and
the cross section, analyzing power, and spin rotation of elastic proton
scattering from 16O, 12C, and 40Ca nuclei are presented at an incident proton
energy of 200 MeV. The results obtained with different versions of chiral
potentials at N4LO are compared. Conclusions: Our results indicate that
convergence has been reached at N4LO. The agreement with the experimental data
is comparable with the agreement obtained in our previous work. We confirm that
building an optical potential within chiral perturbation theory is a promising
approach for describing elastic proton-nucleus scattering.Comment: Physical Review C, in prin
- …