Background: Elastic scattering is probably the main event in the interactions
of nucleons with nuclei. Even if this process has been extensively studied in
the last years, a consistent description, i.e., starting from microscopic two-
and many-body forces connected by the same symmetries and principles, is still
under development. Purpose: In a previous paper we derived a theoretical
optical potential from NN chiral potentials at fourth order (N3LO). In the
present work we use NN chiral potentials at fifth order (N4LO), with the
purpose to check the convergence and to assess the theoretical errors
associated with the truncation of the chiral expansion in the construction of
an optical potential. Methods: The optical potential is derived as the
first-order term within the spectator expansion of the nonrelativistic multiple
scattering theory and adopting the impulse approximation and the optimum
factorization approximation. Results: The pp and np Wolfenstein amplitudes and
the cross section, analyzing power, and spin rotation of elastic proton
scattering from 16O, 12C, and 40Ca nuclei are presented at an incident proton
energy of 200 MeV. The results obtained with different versions of chiral
potentials at N4LO are compared. Conclusions: Our results indicate that
convergence has been reached at N4LO. The agreement with the experimental data
is comparable with the agreement obtained in our previous work. We confirm that
building an optical potential within chiral perturbation theory is a promising
approach for describing elastic proton-nucleus scattering.Comment: Physical Review C, in prin