160 research outputs found

    CFRP drilling: Fundamental study of local feed force and consequences on hole exit damage

    Get PDF
    Carbon Fiber-Reinforced by Plastic (CFRP) is now commonly used in the aircraft industry. The main challenge is to manufacture this difficult-to-cut work material, considering its quality criteria and economical aspects. Drilling is the main machining operation required for the assembly of the aircraft structure. In this paper, results are presented and discussed regarding exit delamination studied at a local scale. Because of the anisotropic properties of CFRP, the fiber cutting modes change with the composite sequence combined with the drill revolution parameters. The local feed forces generated by the cutting edge on the hole bottom may be correlated with delaminating aspects. A posttreatment method is proposed to analyze precisely these feed force and cutting torque distributions. Appropriate ply sequences are identified in order to limit the mechanical load concentration and the risk of delamination or uncut fiber

    Intrinsic defects and mid-gap states in quasi-one-dimensional Indium Telluride

    Full text link
    Recently, intriguing physical properties have been unraveled in anisotropic semiconductors, in which the in-plane electronic band structure anisotropy often originates from the low crystallographic symmetry. The atomic chain is the ultimate limit in material downscaling for electronics, a frontier for establishing an entirely new field of one-dimensional quantum materials. Electronic and structural properties of chain-like InTe are essential for better understanding of device applications such as thermoelectrics. Here, we use scanning tunneling microscopy/spectroscopy (STM/STS) measurements and density functional theory (DFT) calculations to directly image the in-plane structural anisotropy in tetragonal Indium Telluride (InTe). As results, we report the direct observation of one-dimensional In1+ chains in InTe. We demonstrate that InTe exhibits a band gap of about 0.40 +-0.02 eV located at the M point of the Brillouin zone. Additionally, line defects are observed in our sample, were attributed to In1+ chain vacancy along the c-axis, a general feature in many other TlSe-like compounds. Our STS and DFT results prove that the presence of In1+ induces localized gap state, located near the valence band maximum (VBM). This acceptor state is responsible for the high intrinsic p-type doping of InTe that we also confirm using angle-resolved photoemission spectroscopy.Comment: n

    Selective control of molecule charge state on graphene using tip-induced electric field and nitrogen doping

    Get PDF
    The combination of graphene with molecules offers promising opportunities to achieve new functionalities. In these hybrid structures, interfacial charge transfer plays a key role in the electronic properties and thus has to be understood and mastered. Using scanning tunneling microscopy and ab initio density functional theory calculations, we show that combining nitrogen doping of graphene with an electric field allows for a selective control of the charge state in a molecular layer on graphene. On pristine graphene, the local gating applied by the tip induces a shift of the molecular levels of adsorbed molecules and can be used to control their charge state. Ab initio calculations show that under the application of an electric field, the hybrid molecule/graphene system behaves like an electrostatic dipole with opposite charges in the molecule and graphene sub-units that are found to be proportional to the electric field amplitude, which thereby controls the charge transfer. When local gating is combined with nitrogen doping of graphene, the charging voltage of molecules on nitrogen is greatly lowered. Consequently, applying the proper electric field allows one to obtain a molecular layer with a mixed charge state, where a selective reduction is performed on single molecules at nitrogen sites. The local gating applied by a tip induces a shift of the energy levels of molecules adsorbed on graphene. A team led by Jerome Lagoute at Universite Paris Diderot investigated the interplay between the charge state of molecules on pristine and doped-graphene, and the tip-induced electric fields in scanning tunneling microscopy experiments. The tip-induced electric field was found to shift the molecular levels of tetracyanoquinodimethane molecules on graphene, leading to a change of charge state at negative bias. Ab initio calculations indicated that the molecule-on-graphene hybrid structure can be regarded as an electrostatic dipole, hence the charge transfer and associated electronic charge in the molecule and graphene could be tuned by the electric field. Furthermore, inserting nitrogen atom dopants allowed shifting the energy levels of single molecules absorbed directly on the electron-donating point defects

    Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer

    Get PDF
    Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers

    Intradermal Testing With COVID-19 mRNA Vaccines Predicts Tolerance

    Get PDF
    BackgroundThe newly developed mRNA-based COVID-19 vaccines can provoke anaphylaxis, possibly induced by polyethylene glycol (PEG) contained in the vaccine. The management of persons with a history of PEG allergy or with a suspected allergic reaction after the first dose remains to be defined.MethodsIn this real-life study, we defined two cohorts of individuals: one pre-vaccination including 187 individuals with high-risk profiles for developing anaphylaxis and a second post-vaccination including 87 individuals with suspected allergic reactions after the COVID-19 mRNA vaccine. Upon negative skin test with an mRNA vaccine, a two-step (10–90%) vaccination protocol was performed. Positive skin tests were confirmed with the basophil activation test (BAT).ResultsAmong 604,267 doses of vaccine, 87 suspected allergic reactions (5 after the booster) were reported to our division for further investigations: 18/87 (21%) were consistent with anaphylaxis, 78/87 (90%) were female, and 47/87 (54%) received the BNT162b2 mRNA vaccine. Vaccine skin tests were negative in 96% and 76% of the pre- and post-vaccination cohorts, respectively. A two-step vaccination was tolerated in 232/236 (98%) of individuals with negative tests. Four individuals experienced isolated asthmatic reactions during the two-step challenge. Vaccine-positive skin tests were consistently confirmed by BAT; CD63 and CD203c expression was selectively inhibited with ibrutinib, suggesting an IgE-dependent mechanism.ConclusionSensitization to SARS-CoV-2 mRNA vaccines can be detected with intradermal testing. Significantly more individuals were sensitized to mRNA vaccines in the post-vaccination cohort. A two-step 10–90%-vaccination protocol can be safely administered upon negative skin testing

    Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes

    Get PDF
    Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent “disappearance” of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology
    corecore