16,956 research outputs found

    Explosion of white dwarfs harboring hybrid CONe cores

    Get PDF
    Recently, it has been found that off-centre carbon burning in a subset of intermediate-mass stars does not propagate all the way to the center, resulting in a class of hybrid CONe cores. Here, we consider the possibility that stars hosting these hybrid CONe cores might belong to a close binary system and, eventually, become white dwarfs accreting from a non-degenerate companion at rates leading to a supernova explosion. We have computed the hydrodynamical phase of the explosion of Chandrasekhar-mass white dwarfs harboring hybrid cores, assuming that the explosion starts at the center, either as a detonation (as may be expected in some degenerate merging scenarios) or as a deflagration (that afterwards transitions into a delayed detonation). We assume these hybrid cores are made of a central CO volume, of mass M(CO), surrounded by an ONe shell. We show that, in case of a pure detonation, a medium-sized CO-rich region, M(CO)<0.4 Msun, results in the ejection of a small fraction of the mantle while leaving a massive bound remnant. Part of this remnant is made of the products of the detonation, Fe-group nuclei, but they are buried in its inner regions, unless convection is activated during the ensuing cooling and shrinking phase of the remnant. In contrast, and somehow paradoxically, delayed detonations do not leave remnants but for the minimum M(CO) we have explored, M(CO)=0.2 Msun, and even in this case the remnant is as small as 0.13 Msun. The ejecta produced by these delayed detonations are characterized by slightly smaller masses of 56Ni and substantially smaller kinetic energies than obtained for a delayed detonation of a 'normal' CO white dwarf. The optical emission expected from these explosions would hardly match the observational properties of typical Type Ia supernovae, although they make interesting candidates for the subluminous class of SN2002cx-like or SNIax.Comment: Accepted for Astronomy and Astrophysics, 11 pages, 4 figure

    Sagnac interference in Carbon nanotube loops

    Get PDF
    In this paper we study electron interference in nanotube loops. The conductance as a function of the applied voltage is shown to oscillate due to interference between electron beams traversing the loop in two opposite directions, with slightly different velocities. The period of these oscillations with respect to the gate voltage, as well as the temperatures required for the effect to appear, are shown to be much larger than those of the related Fabry-Perot interference. This effect is analogous to the Sagnac effect in light interferometers. We calculate the effect of interactions on the period of the oscillations, and show that even though interactions destroy much of the near-degeneracy of velocities in the symmetric spin channel, the slow interference effects survive.Comment: 5 pages, 4 figure

    Hierarchical reinforcement learning using path clustering

    Get PDF
    In this paper we intend to study the possibility to improve the performance of the Q-Learning algorithm, by automatically finding subgoals and making better use of the acquired knowledge. This research explores a method that allows an agent to gather information about sequences of states that lead to a goal, detect classes of common sequences and introduce the states at the end of these sequences as subgoals. We use the taxiproblem (a standard in Hierarchical Reinforcement Learning literature) and conclude that, even though this problem's scale is relatively small, in most of the cases subgoals do improve the learning speed, achieving relatively good results faster than standard Q-Learning. We propose a specific iteration interval as the most appropriate to insert subgoals in the learning process. We also found that early adoption of subgoals may lead to suboptimal learning. The extension to more challenging problems is an interesting subject for future work.info:eu-repo/semantics/acceptedVersio

    Joint constraints on galaxy bias and σ8\sigma_8 through the N-pdf of the galaxy number density

    Get PDF
    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ8\sigma_8). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes Mr≤−20M_r \leq -20). We obtain b^=1.193±0.074\hat{b} = 1.193 \pm 0.074 and σ8^=0.862±0.080\hat{\sigma_8} = 0.862 \pm 0.080, for galaxy number density fluctuations in cells of a size of 30h−130h^{-1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.Comment: 25 pages, 9 figures, 2 tables. v2: Substantial revision, adding the joint constraints with \sigma_8 and testing with Las Damas mocks. Matches version accepted for publication in JCA

    Shell-like structures in our cosmic neighbourhood

    Full text link
    Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8. We calculate the distance distributions between rich clusters of galaxies, and groups and clusters of various richness, look for the maxima in the distance distributions, and select candidates of shell-like structures. We analyse the space distribution of groups and clusters forming shell walls. We find six possible candidates of shell-like structures, in which galaxy clusters have maxima in the distance distribution to other galaxy groups and clusters at the distance of about 120 Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of other groups and clusters around them at the distance of about 120 Mpc/h among our rich cluster sample, and another maximum at the distance of about 240 Mpc/h. The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost complete shell of galaxy groups, clusters and superclusters. The richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster and the Ursa Major supercluster are among them. The probability that we obtain maxima like this from random distributions is lower than 0.001. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a BAO shell (approximately 109 Mpc/h versus approximately 120 Mpc/h), and they are determined by very rich galaxy clusters and superclusters with high density contrast while BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences.Comment: Comments: 9 pages, 10 figures, Astronomy and Astrophysics, in pres

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments

    How to generate pentagonal symmetry using Turing systems

    Get PDF
    We explore numerically the formation of Turing patterns in a confined circular domain with small aspect ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids. Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids

    Dynamics of cholesteric structures in an electric field

    Full text link
    Motivated by Lehmann-like rotation phenomena in cholesteric drops we study the transverse drift of two types of cholesteric fingers, which form rotating spirals in thin layers of cholesteric liquid crystal in an ac or dc electric field. We show that electrohydrodynamic effects induced by Carr-Helfrich charge separation or flexoelectric charge generation can describe the drift of cholesteric fingers. We argue that the observed Lehmann-like phenomena can be understood on the same basis.Comment: 4 pages, 4 figures, submitted to PR

    GCRT J1745-3009 as a Transient White Dwarf Pulsar

    Full text link
    A transient radio source in the direction of the Galactic Center, GCRT J1745-3009, exhibited 5 peculiar consecutive outbursts at 0.33 GHz with a period of 77.13 minutes and a duration of ~10 minutes for each outburst. It has been claimed to be the prototype of a hitherto unknown class of transient radio sources. We interpret it as a transient white dwarf pulsar with a period of 77.13 minutes. The ~10-minute flaring duration corresponds to the epoch when the radio beam sweeps our line of sight. The bursting epoch corresponds to the episodes when stronger sunspot-like magnetic fields emerge into the white dwarf polar cap region during which the pair production condition is satisfied and the white dwarf behaves like a radio pulsar. It switches off as the pair production condition breaks down.Comment: minor changes, ApJL, in pres

    Non-Minimal and Non-Universal Supersymmetry

    Get PDF
    I motivate and discuss non-minimal and non-universal models of supersymmetry and supergravity consistent with string unification at 101610^{16} GeV.Comment: 10 pages, Latex. Plenary talk given at 6th Workshop in High Energy Physics Phenomenology (WHEPP 6), Chennai (Madras), India, 3-15 Jan 200
    • …
    corecore