513 research outputs found

    The Exact Solution of the Riemann Problem in Relativistic MHD

    Get PDF
    We discuss the procedure for the exact solution of the Riemann problem in special relativistic magnetohydrodynamics (MHD). We consider both initial states leading to a set of only three waves analogous to the ones in relativistic hydrodynamics, as well as generic initial states leading to the full set of seven MHD waves. Because of its generality, the solution presented here could serve as an important test for those numerical codes solving the MHD equations in relativistic regimes.Comment: 36 pages, 13 figures. Minor changes to match published versio

    Prompt Electromagnetic Transients from Binary Black Hole Mergers

    Get PDF
    Binary black hole (BBH) mergers provide a prime source for current and future interferometric GW observatories. Massive BBH mergers may often take place in plasma-rich environments, leading to the exciting possibility of a concurrent electromagnetic (EM) signal observable by traditional astronomical facilities. However, many critical questions about the generation of such counterparts remain unanswered. We explore mechanisms that may drive EM counterparts with magnetohydrodynamic simulations treating a range of scenarios involving equal-mass black-hole binaries immersed in an initially homogeneous fluid with uniform, orbitally aligned magnetic fields. We find that the time development of Poynting luminosity, which may drive jet-like emissions, is relatively insensitive to aspects of the initial configuration. In particular, over a significant range of initial values, the central magnetic field strength is effectively regulated by the gas flow to yield a Poynting luminosity of 10451046ρ13M82ergs110^{45}-10^{46} \rho_{-13} M_8^2 \, {\rm erg}\,{\rm s}^{-1}, with BBH mass scaled to M8M/(108M)M_8 \equiv M/(10^8 M_{\odot}) and ambient density ρ13ρ/(1013gcm3)\rho_{-13} \equiv \rho/(10^{-13} \, {\rm g} \, {\rm cm}^{-3}). We also calculate the direct plasma synchrotron emissions processed through geodesic ray-tracing. Despite lensing effects and dynamics, we find the observed synchrotron flux varies little leading up to merger.Comment: 22 pages, 21 figures; additional reference + clarifying text added to match published versio

    Faranoff-Riley type I jet deceleration at density discontinuities "Relativistic hydrodynamics with realistic equation of state"

    Get PDF
    The deceleration mechanisms for relativistic jets in active galactic nuclei remain an open question, and in this paper we propose a model which could explain sudden jet deceleration, invoking density discontinuities. This is particularly motivated by recent indications from HYMORS. Exploiting high resolution, numerical simulations, we demonstrate that for both high and low energy jets, always at high Lorentz factor, a transition to a higher density environment can cause a significant fraction of the directed jet energy to be lost on reflection. This can explain how one-sided jet deceleration and a transition to FR I type can occur in HYMORS, which start as FR II (and remain so on the other side). For that purpose, we implemented in the relativistic hydrodynamic grid-adaptive AMRVAC code, the Synge-type equation of state introduced in the general polytropic case by Meliani et al. (2004). We present results for 10 model computations, varying the inlet Lorentz factor from 10 to 20, including uniform or decreasing density profiles, and allowing for cylindrical versus conical jet models. As long as the jet propagates through uniform media, we find that the density contrast sets most of the propagation characteristics, fully consistent with previous modeling efforts. When the jet runs into a denser medium, we find a clear distinction in the decelaration of high energy jets depending on the encountered density jump. For fairly high density contrast, the jet becomes destabilised and compressed, decelerates strongly (up to subrelativistic speeds) and can form knots. We point out differences that are found between cylindrical and conical jet models, together with dynamical details like the Richtmyer-Meshkov instabilities developing at the original contact interface.Comment: accepted in A&

    Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars

    No full text
    To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB)model. The typical numerical phasing errors over the 22\simeq 22 GW cycles are Δϕ±0.24\Delta \phi\simeq \pm 0.24 rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians

    Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    Get PDF
    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta

    Implementing a new recovery scheme for primitive variables in the general relativistic magnetohydrodynamic code Spritz

    Get PDF
    General relativistic magnetohydrodynamic (GRMHD) simulations represent a fundamental tool to probe various underlying mechanisms at play during binary neutron star (BNS) and neutron star (NS) - black hole (BH) mergers. Contemporary flux-conservative GRMHD codes numerically evolve a set of conservative equations based on `conserved' variables which then need to be converted back into the fundamental (`primitive') variables. The corresponding conservative-to-primitive variable recovery procedure, based on root-finding algorithms, constitutes one of the core elements of such GRMHD codes. Recently, a new robust, accurate and efficient recovery scheme called RePrimAnd was introduced, which has demonstrated the ability to always converge to a unique solution. The scheme provides fine-grained error policies to handle invalid states caused by evolution errors, and also provides analytical bounds for the error of all primitive variables. In this work, we describe the technical aspects of implementing the RePrimAnd scheme into the GRMHD code Spritz. To check our implementation as well as to assess the various features of the scheme, we perform a number of GRMHD tests in three dimensions. Our tests, which include critical cases such as a NS collapse to a BH as well as the early evolution (~50 ms) of a Fishbone-Moncrief BH-accrection disk system, show that RePrimAnd is able to support magnetized, low density environments with magnetic-to-fluid pressure ratios as high as 10^4, in situations where the previously used recovery scheme fails

    Magnetohydrodynamic Effects in Relativistic Ejecta

    No full text

    Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error

    Full text link
    We have recently presented an investigation in full general relativity of the dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge, producing a black hole surrounded by a torus (see arXiv:0804.0594). We here discuss in more detail the convergence properties of the results presented in arXiv:0804.0594 and, in particular, the deterioration of the convergence rate at the merger and during the survival of the merged object, when strong shocks are formed and turbulence develops. We also show that physically reasonable and numerically convergent results obtained at low-resolution suffer however from large truncation errors and hence are of little physical use. We summarize our findings in an "error budget", which includes the different sources of possible inaccuracies we have investigated and provides a first quantitative assessment of the precision in the modelling of compact fluid binaries.Comment: 13 pages, 5 figures. Minor changes to match published version. Added figure 5 right pane

    A multidimensional grid-adaptive relativistic magnetofluid code

    Full text link
    A robust second order, shock-capturing numerical scheme for multi-dimensional special relativistic magnetohydrodynamics on computational domains with adaptive mesh refinement is presented. The base solver is a total variation diminishing Lax-Friedrichs scheme in a finite volume setting and is combined with a diffusive approach for controlling magnetic monopole errors. The consistency between the primitive and conservative variables is ensured at all limited reconstructions and the spatial part of the four velocity is used as a primitive variable. Demonstrative relativistic examples are shown to validate the implementation. We recover known exact solutions to relativistic MHD Riemann problems, and simulate the shock-dominated long term evolution of Lorentz factor 7 vortical flows distorting magnetic island chains.Comment: accepted for publication in Computer Physics Communication
    corecore