223 research outputs found

    A systems model of phosphorylation for inflammatory signaling events

    Get PDF
    published_or_final_versio

    Reactive Oxygen Species Modulate the Barrier Function of the Human Glomerular Endothelial Glycocalyx

    Get PDF
    Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S35 and 3H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress. © 2013 Singh et al.published_or_final_versio

    An information theoretic approach to insulin sensing by human kidney podocytes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordPodocytes are key components of the glomerular filtration barrier (GFB). They are insulin-responsive but can become insulin-resistant, causing features of the leading global cause of kidney failure, diabetic nephropathy. Insulin acts via insulin receptors to control activities fundamental to GFB integrity, but the amount of information transferred is unknown. Here we measure this in human podocytes, using information theory-derived statistics that take into account cell-cell variability. High content imaging was used to measure insulin effects on Akt, FOXO and ERK. Mutual Information (MI) and Channel Capacity (CC) were calculated as measures of information transfer. We find that insulin acts via noisy communication channels with more information flow to Akt than to ERK. Information flow estimates were increased by consideration of joint sensing (ERK and Akt) and response trajectory (live cell imaging of FOXO1-clover translocation). Nevertheless, MI values were always <1Bit as most information was lost through signaling. Constitutive PI3K activity is a predominant feature of the system that restricts the proportion of CC engaged by insulin. Negative feedback from Akt supressed this activity and thereby improved insulin sensing, whereas sensing was robust to manipulation of feedforward signaling by inhibiting PI3K, PTEN or PTP1B. The decisions made by individual podocytes dictate GFB integrity, so we suggest that understanding the information on which the decisions are based will improve understanding of diabetic kidney disease and its treatment.Kidney Research UK Gran

    Endothelial glycocalyx is damaged in diabetic cardiomyopathy: angiopoietin 1 restores glycocalyx and improves diastolic function in mice

    Get PDF
    Aims/hypothesis: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. Methods: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. Results: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. Conclusions/interpretation: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target

    Stabilisation of β-Catenin Downstream of T Cell Receptor Signalling

    Get PDF
    The role of TCF/β-catenin signalling in T cell development is well established, but important roles in mature T cells have only recently come to light.Here we have investigated the signalling pathways that are involved in the regulation of β-catenin in primary human T cells. We demonstrate that β-catenin expression is upregulated rapidly after T cell receptor (TCR) stimulation and that this involves protein stabilisation rather than an increase in mRNA levels. Similar to events in Wnt signalling, the increase in β-catenin coincides with an inhibition of GSK3, the kinase that is required for β-catenin degradation. β-catenin stabilisation in T cells can also be induced by the activation of PKC with phorbol esters and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PKC). Upon TCR signalling, β-catenin accumulates in the nucleus and, parallel to this, the ratio of TCF1 isoforms is shifted in favour of the longer β-catenin binding isoforms. However, phosphorylated β-catenin, which is believed to be inactive, can also be detected and the expression of Wnt target genes Axin2 and dickkopf is down regulated.These data show that in mature human T cells, TCR signalling via PI3K and PKC can result in the stabilisation of β-catenin, allowing β-catenin to migrate to the nucleus. They further highlight important differences between β-catenin activities in TCR and Wnt signalling

    A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus

    Get PDF
    Contains fulltext : 90777.pdf (publisher's version ) (Open Access)AIMS/HYPOTHESIS: Type 2 diabetes mellitus is associated with moderate decrements in cognitive functioning, mainly in verbal memory, information-processing speed and executive functions. How this cognitive profile evolves over time is uncertain. The present study aims to provide detailed information on the evolution of cognitive decrements in type 2 diabetes over time. METHODS: Sixty-eight patients with type 2 diabetes and 38 controls matched for age, sex and estimated IQ performed an elaborate neuropsychological examination in 2002-2004 and again in 2006-2008, including 11 tasks covering five cognitive domains. Vascular and metabolic determinants were recorded. Data were analysed with repeated measures analysis of variance, including main effects for group, time and the group x time interaction. RESULTS: Patients with type 2 diabetes showed moderate decrements in information-processing speed (mean difference in z scores [95% CI] -0.37 [-0.69, -0.05]) and attention and executive functions (-0.25 [-0.49, -0.01]) compared with controls at both the baseline and the 4 year follow-up examination. After 4 years both groups showed a decline in abstract reasoning (-0.16 [-0.30, -0.02]) and attention and executive functioning (-0.29 [-0.40, -0.17]), but there was no evidence for accelerated cognitive decline in the patients with type 2 diabetes as compared with controls (all p > 0.05). CONCLUSIONS/INTERPRETATION: In non-demented patients with type 2 diabetes, cognitive decrements are moderate in size and cognitive decline over 4 years is largely within the range of what can be viewed in normal ageing. Apparently, diabetes-related cognitive changes develop slowly over a prolonged period of time.8 p

    Dysregulated Nephrin in Diabetic Nephropathy of Type 2 Diabetes: A Cross Sectional Study

    Get PDF
    Podocyte specific proteins are dysregulated in diabetic nephropathy, though the extent of their expression loss is not identical and may be subject to different regulatory factors. Quantifying the degree of loss may help identify the most useful protein to use as an early biomarker of diabetic nephropathy.Protein expression of synaptopodin, podocin and nephrin were quantified in 15 Type 2 diabetic renal biopsies and 12 control patients. We found statistically significant downregulation of synaptopodin (P<0.0001), podocin (P = 0.0002), and nephrin (P<0.0001) in kidney biopsies of diabetic nephropathy as compared with controls. Urinary nephrin levels (nephrinuria) were then measured in 66 patients with Type 2 diabetes and 10 healthy controls by an enzyme-linked immunosorbent assay (Exocell, Philadelphia, PA). When divided into groups according to normo-, micro-, and macroalbuminuria, nephrinuria was found to be present in 100% of diabetic patients with micro- and macroalbuminuria, as well as 54% of patients with normoalbuminuria. Nephrinuria also correlated significantly with albuminuria (rho = 0.89, p<0.001), systolic blood pressure (rho = 0.32, p = 0.007), and correlated negatively with serum albumin (rho = -0.48, p<0.0001) and eGFR (rho = -0.33, p = 0.005).These data suggest that key podocyte-specific protein expressions are significantly and differentially downregulated in diabetic nephropathy. The finding that nephrinuria is observed in a majority of these normoalbuminuric patients demonstrates that it may precede microalbuminuria. If further research confirms nephrinuria to be a biomarker of pre-clinical diabetic nephropathy, it would shed light on podocyte metabolism in disease, and raise the possibility of new and earlier therapeutic targets

    NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines

    Get PDF
    HIV-1 protease inhibitor (PI), nelfinavir (NFV) induced growth arrest and apoptosis of NCI-H460 and -H520, A549, EBC-1 and ABC-1 non-small-cell lung cancer (NSCLC) cells in association with upregulation of p21waf1, p27 kip1 and p53, and downregulation of Bcl-2 and matrix metalloproteinase (MMP)-2 proteins. We found that NFV blocked Akt signalling in these cells as measured by Akt kinase assay with glycogen synthase kinase-3α/β (GSK-3α/β) as a substrate. To explore the role of Akt signalling in NFV-mediated growth inhibition of NSCLC cells, we blocked this signal pathway by transfection of Akt small interfering RNA (siRNA) in these cells; transient transfection of Akt siRNA in NCI-H460 cells decreased the level of Bcl-2 protein and slowed their proliferation compared to the nonspecific siRNA-transfected cells. Conversely, forced-expression of Akt partially reversed NFV-mediated growth inhibition of these cells, suggesting that Akt may be a molecular target of NFV in NSCLC cells. Also, we found that inhibition of Akt signalling by NFV enhanced the ability of docetaxel to inhibit the growth of NCI-H460 and -H520 cells, as measured by MTT assay. Importantly, NFV slowed the proliferation and induced apoptosis of NCI-H460 cells present as tumour xenografts in nude mice without adverse systemic effects. Taken together, this family of compounds might be useful for the treatment of individuals with NSCLC

    14-3-3σ Regulates β-Catenin-Mediated Mouse Embryonic Stem Cell Proliferation by Sequestering GSK-3β

    Get PDF
    [[abstract]]Background: Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear. Methodology and Principal Findings: In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding. Significance:Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion
    corecore