216 research outputs found

    Forecasts for the detection of the magnetised cosmic web from cosmological simulations

    Full text link
    The cosmic web contains a large fraction of the total gas mass in the universe but is difficult to detect at most wavelengths. Synchrotron emission from shock-accelerated electrons may offer the chance of imaging the cosmic web at radio wavelengths. In this work we use 3D cosmological ENZO-MHD simulations (combined with a post-processing renormalisation of the magnetic field to bracket for missing physical ingredients and resolution effects) to produce models of the radio emission from the cosmic web. In post-processing we study the capabilities of 13 large radio surveys to detect this emission. We find that surveys by LOFAR, SKA1-LOW and MWA have a chance of detecting the cosmic web, provided that the magnetisation level of the tenuous medium in filaments is of the order of 1% of the thermal gas energy.Comment: 19 pages, 18 figures. A&A accepted, in press. The public repository of radio maps for the full volumes studied in this work is available at http://www.hs.uni-hamburg.de/DE/Ins/Per/Vazza/projects/Public_data.htm

    Visualization, Exploration and Data Analysis of Complex Astrophysical Data

    Full text link
    In this paper we show how advanced visualization tools can help the researcher in investigating and extracting information from data. The focus is on VisIVO, a novel open source graphics application, which blends high performance multidimensional visualization techniques and up-to-date technologies to cooperate with other applications and to access remote, distributed data archives. VisIVO supports the standards defined by the International Virtual Observatory Alliance in order to make it interoperable with VO data repositories. The paper describes the basic technical details and features of the software and it dedicates a large section to show how VisIVO can be used in several scientific cases.Comment: 32 pages, 15 figures, accepted by PAS

    VisIVOWeb: A WWW Environment for Large-Scale Astrophysical Visualization

    Get PDF
    This article presents a newly developed Web portal called VisIVOWeb that aims to provide the astrophysical community with powerful visualization tools for large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively handle modern numerical simulations and real-world observations. Our open-source software is based on established visualization toolkits offering high-quality rendering algorithms. The underlying data management is discussed with the supported visualization interfaces and movie-making functionality. We introduce VisIVOWeb Network, a robust network of customized Web portals for visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution for seamlessly connecting to existing astrophysical archives. A significant effort has been devoted for ensuring interoperability with existing tools by adhering to IVOA standards. We conclude with a summary of our work and a discussion on future developments

    VisIVO - Integrated Tools and Services for Large-Scale Astrophysical Visualization

    Full text link
    VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments

    New constraints on the magnetic field in cosmic web filaments

    Get PDF
    Strong accretion shocks are expected to illuminate the warm hot intergalactic medium encompassed by the filaments of the cosmic web, through synchrotron radio emission. Given their high sensitivity, large low-frequency radio facilities may already be able to detect signatures of this extended radio emission from the region between two close and massive galaxy clusters. In this work we exploit the non-detection of such diffuse emission by deep observations of two pairs of relatively close ('10 Mpc) and massive (M500 = 1014 M ) galaxy clusters using the LOw-Frequency ARray. By combining the results from the two putative inter-cluster filaments, we derive new independent constraints on the median strength of intergalactic magnetic fields: B0 Mpc < 2:5 Ă— 102 nG (95% confidence level). Based on cosmological simulations and assuming a primordial origin of the B-fields, these estimates can be used to limit the amplitude of primordial seed magnetic fields: B0 = 10 nG. We recommend the observation of similar cluster pairs as a powerful tool to set tight constraints on the amplitude of extragalactic magnetic fields

    COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems

    Get PDF
    We describe a new hybrid N-body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features which distinguish it from other PM-PPM codes. In particular, to solve the Poisson equation we have written a new multigrid solver which can determine the gravitational potential of isolated matter distributions and which properly takes into account the finite-volume discretization required by PPM. All components of the code are constructed to work with a nonuniform mesh, preserving second-order spatial differences. The PPM code uses vacuum boundary conditions for isolated problems, preventing inflows when appropriate. The PM code uses a second-order variable-timestep time integration scheme. Radiative cooling and cosmological expansion terms are included. COSMOS has been implemented for parallel computers using the Parallel Virtual Machine (PVM) library, and it features a modular design which simplifies the addition of new physics and the configuration of the code for different types of problems. We discuss the equations solved by COSMOS and describe the algorithms used, with emphasis on these features. We also discuss the results of tests we have performed to establish that COSMOS works and to determine its range of validity.Comment: 43 pages, 14 figures, submitted to ApJS and revised according to referee's comment

    Rosetta: A container-centric science platform for resource-intensive, interactive data analysis

    Get PDF
    Rosetta is a science platform for resource-intensive, interactive data analysis which runs user tasks as software containers. It is built on top of a novel architecture based on framing user tasks as microservices – independent and self-contained units – which allows to fully support custom and user-defined software packages, libraries and environments. These include complete remote desktop and GUI applications, besides common analysis environments as the Jupyter Notebooks. Rosetta relies on Open Container Initiative containers, which allow for safe, effective and reproducible code execution; can use a number of container engines and runtimes; and seamlessly supports several workload management systems, thus enabling containerized workloads on a wide range of computing resources. Although developed in the astronomy and astrophysics space, Rosetta can virtually support any science and technology domain where resource-intensive, interactive data analysis is required

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    New constraints on the magnetic field in cosmic web filaments

    Get PDF
    Strong accretion shocks are expected to illuminate the warm-hot intergalactic medium encompassed by the filaments of the cosmic web, through synchrotron radio emission. Given their high sensitivity, large low-frequency radio facilities may already be able to detect signatures of this extended radio emission from the region between two close and massive galaxy clusters. In this work we exploit the non-detection of such diffuse emission by deep observations of two pairs of relatively close (similar or equal to 10 Mpc) and massive (M-500 >= 10(14) M-circle dot) galaxy clusters using the LOw-Frequency ARray. By combining the results from the two putative inter-cluster filaments, we derive new independent constraints on the median strength of intergalactic magnetic fields: B-10Mpc < 2.5 x 10(2) nG (95% confidence level). Based on cosmological simulations and assuming a primordial origin of the B-fields, these estimates can be used to limit the amplitude of primordial seed magnetic fields: B-0 <= 10 nG. We recommend the observation of similar cluster pairs as a powerful tool to set tight constraints on the amplitude of extragalactic magnetic fields.Large scale structure and cosmolog
    • …
    corecore