The cosmic web contains a large fraction of the total gas mass in the
universe but is difficult to detect at most wavelengths. Synchrotron emission
from shock-accelerated electrons may offer the chance of imaging the cosmic web
at radio wavelengths. In this work we use 3D cosmological ENZO-MHD simulations
(combined with a post-processing renormalisation of the magnetic field to
bracket for missing physical ingredients and resolution effects) to produce
models of the radio emission from the cosmic web. In post-processing we study
the capabilities of 13 large radio surveys to detect this emission. We find
that surveys by LOFAR, SKA1-LOW and MWA have a chance of detecting the cosmic
web, provided that the magnetisation level of the tenuous medium in filaments
is of the order of 1% of the thermal gas energy.Comment: 19 pages, 18 figures. A&A accepted, in press. The public repository
of radio maps for the full volumes studied in this work is available at
http://www.hs.uni-hamburg.de/DE/Ins/Per/Vazza/projects/Public_data.htm