102 research outputs found

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    Get PDF
    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm

    Rapid Growth Reduces Cold Resistance: Evidence from Latitudinal Variation in Growth Rate, Cold Resistance and Stress Proteins

    Get PDF
    Background: Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Methodology/Principal Finding: Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. Conclusions/Significance: We provide evidence for a novel cost of rapid growth: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adul

    Assessment of the Food Habits of the Moroccan Dorcas Gazelle in M’Sabih Talaa, West Central Morocco, Using the trnL Approach

    Get PDF
    Food habits of the Moroccan dorcas gazelle, Gazella dorcas massaesyla, previously investigated in the 1980s using microhistological fecal analysis, in the M’Sabih Talaa Reserve, west central Morocco, were re-evaluated over three seasons (spring, summer and autumn 2009) using the trnL approach to determine the diet composition and its seasonal variation from fecal samples. Taxonomic identification was carried out using the identification originating from the database built from EMBL and the list of plant species within the reserve. The total taxonomic richness in the reserve was 130 instead of 171 species in the 1980s. The diet composition revealed to be much more diversified (71 plant taxa belonging to 57 genus and 29 families) than it was 22 years ago (29 identified taxa). Thirty-four taxa were newly identified in the diet while 13 reported in 1986–87 were not found. Moroccan dorcas gazelle showed a high preference to Acacia gummifera, Anagallis arvensis, Glebionis coronaria, Cladanthus arabicus, Diplotaxis tenuisiliqua, Erodium salzmannii, Limonium thouini, Lotus arenarius and Zizyphus lotus. Seasonal variations occurred in both number (40–41 taxa in spring-summer and 49 taxa in autumn vs. respectively 23–22 and 26 in 1986–1987) and taxonomic type of eaten plant taxa. This dietary diversification could be attributed either to the difference in methods of analysis, trnL approach having a higher taxonomic resolution, or a potential change in nutritional quality of plants over time

    Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control).</p> <p>Results</p> <p>The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved <it>cis </it>regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development.</p> <p>Conclusion</p> <p>This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate family amino acids, and storage proteins. Some of the differentially expressed genes could be useful for the development of molecular markers if they are located in a known QTL region for milling yield or eating quality in the rice genome. Therefore, our comprehensive and deep survey of the developing seed transcriptome in five rice cultivars has provided a rich genomic resource for further elucidating the molecular basis of grain quality in rice.</p

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Starvation resistance of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae): tradeoffs among growth, body size, and survival

    Full text link
    Survival and body composition of starving gypsy moth larvae initially reared on aspen foliage or artificial diet differeing in nitrogen (N) and carbohydrate concentration were examined under laboratory conditions. Diet nitrogen concentration strongly affected starvation resistance and body composition, but diet carbohydrate content had no effects on these. Within any single diet treatment, greater body mass afforded greater resistance to starvation. However, starving larvae reared on 1.5% N diet survived nearly three days longer than larvae reared on 3.5% N diet. Larvae reared on artificial diet survived longer than larvae reared on aspen. Differences in survival of larvae reared on artificial diet with low and high nitrogen concentrations could not be attributed to variation in respiration rates, but were associated with differences in body composition. Although percentage lipid in larvae was unaffected by diet nitrogen concentration, larvae reared on 1.5% N diet had a higher percentage carbohydrate and lower percentage protein in their bodies prior to starvation than larvae reared on 3.5% N diet. Hence, larger energy reserves of larvae reared on low nitrogen diet may have contributed to their greater starvation resistance. Whereas survival under food stress was lower for larvae reared on high N diets, growth rates and pupal weights were higher, suggesting a tradeoff between rapid growth and survival. Larger body size does not necessarily reflect larger energy reserves, and, in fact, larger body size accured via greater protein accumulation may be at the expense of energy reserves. Large, fast-growing larvae may be more fit when food is abundant, but this advantage may be severely diminished under food stress. The potential ecological and evolutionary implications of a growth/survival tradeoff are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47792/1/442_2004_Article_BF00317588.pd
    corecore