288 research outputs found

    The role of clathrin in post-golgi trafficking in toxoplasma gondii

    Get PDF
    Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle

    The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis

    Get PDF
    Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis

    C-KIT Signaling Depends on Microphthalmia-Associated Transcription Factor for Effects on Cell Proliferation

    Get PDF
    The development of melanocytes is regulated by the tyrosine kinase receptor c-KIT and the basic-helix-loop-helix-leucine zipper transcription factor Mitf. These essential melanocyte survival regulators are also well known oncogenic factors in malignant melanoma. Despite their importance, not much is known about the regulatory mechanisms and signaling pathways involved. In this study, we therefore sought to identify the signaling pathways and mechanisms involved in c-KIT mediated regulation of Mitf. We report that c-KIT stimulation leads to the activation of Mitf specifically through the c-KIT phosphorylation sites Y721 (PI3 kinase binding site), Y568 and Y570 (Src binding site). Our study not only confirms the involvement of Ras-Erk signaling pathway in the activation of Mitf, but also establishes that Src kinase binding to Y568 and Y570 of c-KIT is required. Using specific inhibitors we observe and verify that c-KIT induced activation of Mitf is dependent on PI3-, Akt-, Src-, p38- or Mek kinases. Moreover, the proliferative effect of c-KIT is dependent on Mitf in HEK293T cells. In contrast, c-KIT Y568F and Y721F mutants are less effective in driving cell proliferation, compared to wild type c-KIT. Our results reveal novel mechanisms by which c-KIT signaling regulates Mitf, with implications for understanding both melanocyte development and melanoma

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (H<sub>II</sub>) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions.</p> <p>Results</p> <p>Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to H<sub>II </sub>transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group.</p> <p>Conclusions</p> <p>This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.</p

    The "Statinth" wonder of the world: a panacea for all illnesses or a bubble about to burst

    Get PDF
    After the introduction of statins in the market as effective lipid lowering agents, they were shown to have effects other than lipid lowering. These actions were collectively referred to as 'pleiotropic actions of statins.' Pleiotropism of statins formed the basis for evaluating statins for several indications other than lipid lowering. Evidence both in favour and against is available for several of these indications. The current review attempts to critically summarise the available data for each of these indications

    Particle identification in ALICE: a Bayesian approach

    Get PDF
    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx\mathrm{d}E/\mathrm{d}x) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels KS0ππ+{\rm K}^0_S \rightarrow \pi^-\pi^+, ϕKK+\phi \rightarrow {\rm K}^-{\rm K}^+, and Λpπ\Lambda \rightarrow {\rm p}\pi^- in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pTp_{\rm T} spectra of pions, kaons, protons, and D0^0 mesons in pp collisions at s=7\sqrt{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0Kπ+^0 \rightarrow {\rm K}^-\pi^+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+pKπ+\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}^-\pi^+ in pp collisions at s=7\sqrt{s}=7 TeV, using the Bayesian approach for the identification of its decay products
    corecore