3,626 research outputs found
Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany
We report on luminance measurements of the summer night sky at a field site
on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the
amount of artificial skyglow from nearby and distant towns in the context of a
planned study on light pollution. The site is located about 70 km north of
Berlin in a rural area possibly belonging to one of the darkest regions in
Germany. Continuous monitoring of the zenith sky luminance between June and
September 2015 was conducted utilizing a Sky Quality Meter. With this device,
typical values for clear nights in the range of 21.5-21.7
magarcsec were measured, which is on the order of the natural sky
brightness during starry nights. On overcast nights, values down to 22.84
magarcsec were obtained, which is about one third as bright as on
clear nights. The luminance measured on clear nights as well as the darkening
with the presence of clouds indicate that there is very little influence of
artificial skyglow on the zenith sky brightness at this location. Furthermore,
fish-eye lens sky imaging luminance photometry was performed with a digital
single-lens reflex camera on a clear night in the absence of moonlight. The
photographs unravel several distant towns as possible sources of light
pollution on the horizon. However, the low level of artificial skyglow makes
the field site at Lake Stechlin an excellent location to study the effects of
skyglow on a lake ecosystem in a controlled fashion.Comment: 20 pages, 8 figures, Journal of Quantitative Spectroscopy and
Radiative Transfer 201
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV
Plasma wakefield acceleration (PWFA) holds much promise for advancing the
energy frontier because it can potentially provide a 1000-fold or more increase
in acceleration gradient with excellent power efficiency in respect with
standard technologies. Most of the advances in beam-driven plasma wakefield
acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC
FFTB[ ]. These experiments have shown that plasmas can accelerate and focus
both electron and positron high energy beams, and an accelerating gradient in
excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB
experiments were essentially proof-of-principle experiments that showed the
great potential of plasma accelerators.
The FACET[ ] test facility at SLAC will in the period 2012-2016 further study
several issues that are directly related to the applicability of PWFA to a
high-energy collider, in particular two-beam acceleration where the witness
beam experiences high beam loading (required for high efficiency), small energy
spread and small emittance dilution (required to achieve luminosity).
The PWFA-LC concept presented in this document is an attempt to find the best
design that takes advantage of the PWFA, identify the critical parameters to be
achieved and eventually the necessary R&D to address their feasibility. It best
benefits from the extensive R&D that has been performed for conventional rf
linear colliders during the last twenty years, especially ILC[ ] and CLIC[ ],
with a potential for a comparably lower power consumption and cost.Comment: Submitted to the proceedings of the Snowmass Process CSS2013. Work
supported in part by the U.S. Department of Energy under contract number
DE-AC02-76SF0051
Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab
We present 3D full-sphere supernova simulations of non-rotating low-mass (~9
Msun) progenitors, covering the entire evolution from core collapse through
bounce and shock revival, through shock breakout from the stellar surface,
until fallback is completed several days later. We obtain low-energy explosions
[~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the
core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB)
progenitor with an oxygen-neon-magnesium core that collapses and explodes as
electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN
models is modelled self-consistently using the Vertex-Prometheus code, whereas
the ECSN explosion is modelled using parametric neutrino transport in the
Prometheus-HOTB code, choosing different explosion energies in the range of
previous self-consistent models. The sAGB and LMCCSN progenitors that share
structural similarities have almost spherical explosions with little metal
mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in
a highly asymmetric explosion. It shows efficient mixing and dramatic shock
deceleration in the extended hydrogen envelope. Both properties allow fast
nickel plumes to catch up with the shock, leading to extreme shock deformation
and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no
significant effects on the neutron star (NS) masses and kicks. The anisotropic
fallback carries considerable angular momentum, however, and determines the
spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in
a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of
~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA
Petahertz Spintronics
The enigmatic coupling between electronic and magnetic phenomena was one of
the riddles propelling the development of modern electromagnetism. Today, the
fully controlled electric field evolution of ultrashort laser pulses permits
the direct and ultrafast control of electronic properties of matter and is the
cornerstone of light-wave electronics. In sharp contrast, because there is no
first order interaction between light and spins, the magnetic properties of
matter can only be affected indirectly on the much slower tens-of-femtosecond
timescale in a sequence of optical excitation followed by the rearrangement of
the spin structure. Here we record an orders of magnitude faster magnetic
switching with sub-femtosecond response time by initiating optical excitations
with near-single-cycle laser pulses in a ferromagnetic layer stack. The
unfolding dynamics are tracked in real-time by a novel attosecond time-resolved
magnetic circular dichroism (atto-MCD) detection scheme revealing optically
induced spin and orbital momentum transfer (OISTR) in synchrony with light
field driven charge relocation. In tandem with ab-initio quantum dynamical
modelling, we show how this mechanism provides simultaneous control over
electronic and magnetic properties that are at the heart of spintronic
functionality. This first incarnation of attomagnetism observes light field
coherent control of spin-dynamics in the initial non-dissipative temporal
regime and paves the way towards coherent spintronic applications with
Petahertz clock rates.Comment: 12 pages, 3+1 figure
Diversity of immunoglobulin light chain genes in non-teleost ray-finned fish uncovers IgL subdivision into five ancient isotypes
<p>The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.</p
The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia : further evidence and meta-analysis
NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ. interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia. PostprintPeer reviewe
- …
