3,626 research outputs found

    Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany

    Get PDF
    We report on luminance measurements of the summer night sky at a field site on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the amount of artificial skyglow from nearby and distant towns in the context of a planned study on light pollution. The site is located about 70 km north of Berlin in a rural area possibly belonging to one of the darkest regions in Germany. Continuous monitoring of the zenith sky luminance between June and September 2015 was conducted utilizing a Sky Quality Meter. With this device, typical values for clear nights in the range of 21.5-21.7 magSQM/_{SQM}/arcsec2^2 were measured, which is on the order of the natural sky brightness during starry nights. On overcast nights, values down to 22.84 magSQM/_{SQM}/arcsec2^2 were obtained, which is about one third as bright as on clear nights. The luminance measured on clear nights as well as the darkening with the presence of clouds indicate that there is very little influence of artificial skyglow on the zenith sky brightness at this location. Furthermore, fish-eye lens sky imaging luminance photometry was performed with a digital single-lens reflex camera on a clear night in the absence of moonlight. The photographs unravel several distant towns as possible sources of light pollution on the horizon. However, the low level of artificial skyglow makes the field site at Lake Stechlin an excellent location to study the effects of skyglow on a lake ecosystem in a controlled fashion.Comment: 20 pages, 8 figures, Journal of Quantitative Spectroscopy and Radiative Transfer 201

    A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    Full text link
    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small energy spread and small emittance dilution (required to achieve luminosity). The PWFA-LC concept presented in this document is an attempt to find the best design that takes advantage of the PWFA, identify the critical parameters to be achieved and eventually the necessary R&D to address their feasibility. It best benefits from the extensive R&D that has been performed for conventional rf linear colliders during the last twenty years, especially ILC[ ] and CLIC[ ], with a potential for a comparably lower power consumption and cost.Comment: Submitted to the proceedings of the Snowmass Process CSS2013. Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF0051

    Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab

    Get PDF
    We present 3D full-sphere supernova simulations of non-rotating low-mass (~9 Msun) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions [~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen-neon-magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the Vertex-Prometheus code, whereas the ECSN explosion is modelled using parametric neutrino transport in the Prometheus-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of ~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA

    Petahertz Spintronics

    Full text link
    The enigmatic coupling between electronic and magnetic phenomena was one of the riddles propelling the development of modern electromagnetism. Today, the fully controlled electric field evolution of ultrashort laser pulses permits the direct and ultrafast control of electronic properties of matter and is the cornerstone of light-wave electronics. In sharp contrast, because there is no first order interaction between light and spins, the magnetic properties of matter can only be affected indirectly on the much slower tens-of-femtosecond timescale in a sequence of optical excitation followed by the rearrangement of the spin structure. Here we record an orders of magnitude faster magnetic switching with sub-femtosecond response time by initiating optical excitations with near-single-cycle laser pulses in a ferromagnetic layer stack. The unfolding dynamics are tracked in real-time by a novel attosecond time-resolved magnetic circular dichroism (atto-MCD) detection scheme revealing optically induced spin and orbital momentum transfer (OISTR) in synchrony with light field driven charge relocation. In tandem with ab-initio quantum dynamical modelling, we show how this mechanism provides simultaneous control over electronic and magnetic properties that are at the heart of spintronic functionality. This first incarnation of attomagnetism observes light field coherent control of spin-dynamics in the initial non-dissipative temporal regime and paves the way towards coherent spintronic applications with Petahertz clock rates.Comment: 12 pages, 3+1 figure

    Diversity of immunoglobulin light chain genes in non-teleost ray-finned fish uncovers IgL subdivision into five ancient isotypes

    Get PDF
    <p>The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.</p

    The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia : further evidence and meta-analysis

    Get PDF
    NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ. interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia. PostprintPeer reviewe
    corecore