719 research outputs found
Recurrence of hepatitis C virus during leucocytopenia and spontaneous clearance after recovery from cytopenia: a case report
<p>Abstract</p> <p>Introduction</p> <p>There is little information about the risk of HCV recurrence in immunosuppressed patients. Although the presence of antibodies to HCV and the absence of HCV-RNA is usually considered to indicate viral elimination, the virus may not be completely eliminated but may be under control of an effective immune response.</p> <p>Case presentation</p> <p>A 69 year old man presented with jaundice, elevated ALT, AST, lipase and concomitant abdominal pain. He was found to be positive for HCV-RNA (genotype 3a) and was diagnosed with acute hepatitis C. Six weeks later no HCV-RNA was detected, and the patient was diagnosed with hyperthyreosis and started on propylthiouracil. After 4 weeks of propylthiouracil treatment, the patient developed leucocytopenia, followed by liver function deterioration and reappearance of HCV-RNA. Propylthiouracil was discontinued and his leukocyte counts increased. Twenty-eight weeks after onset of acute hepatitis C, no HCV-RNA was detected.</p> <p>Conclusion</p> <p>This case history shows the risk of recurrence of HCV during leucocytopenia. These findings indicate that patients who are anti-HCV positive but HCV-RNA negative may be at risk of cytopenia-induced HCV reactivation.</p
A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying
In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al
Tracking Virus-Specific CD4+ T Cells during and after Acute Hepatitis C Virus Infection
CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays.
Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C.
During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists
Small Polarons in Transition Metal Oxides
The formation of polarons is a pervasive phenomenon in transition metal oxide
compounds, with a strong impact on the physical properties and functionalities
of the hosting materials. In its original formulation the polaron problem
considers a single charge carrier in a polar crystal interacting with its
surrounding lattice. Depending on the spatial extension of the polaron
quasiparticle, originating from the coupling between the excess charge and the
phonon field, one speaks of small or large polarons. This chapter discusses the
modeling of small polarons in real materials, with a particular focus on the
archetypal polaron material TiO2. After an introductory part, surveying the
fundamental theoretical and experimental aspects of the physics of polarons,
the chapter examines how to model small polarons using first principles schemes
in order to predict, understand and interpret a variety of polaron properties
in bulk phases and surfaces. Following the spirit of this handbook, different
types of computational procedures and prescriptions are presented with specific
instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure
Delayed Differentiation Makes Many Models Compatible with Data for CD8+ T Cell Differentiation
Upon antigen stimulation, naïve CD8+ T cells differentiate into short-lived effectors and longer-lived memory T cells. The kinetics of expansion of antigen-specific CD8+ T cells is highly reproducible at the population level, but the fate of individual naïve cells is stochastic, as individual naïve CD8+ T cells produce different numbers of effector and memory cells. Using mathematical models to analyse experimental data on tracing the fate of individual naïve T cells, it was previously shown that a linear model where naïve CD8+ T cells first differentiate into memory precursors that subsequently differentiate into effector cells describes the data best. However, this ‘memory first’ linear model assumed that the proliferation and differentiation events were distributed exponentially, whereas several studies indicate that differentiation of CD8+ T cell subsets need not follow an exponential distribution. Here we investigate the effect of delayed differentiation by adding intermediate compartments and use similar ordinary differential equations and Gillespie simulations to evaluate alternate models of CD8+ T cell differentiation. Models where a substantial fraction of the naïve CD8+ T cells directly differentiate into effector cells, without going through a memory phase, exhibit population dynamics that are very similar to the original ‘memory first’ linear model. Because alternate models with delayed differentiation perform better than those without a delay, we conclude that non-exponential forms of cellular differentiation need to be considered when comparing models. Hence the exact pathway for the differentiation of naïve CD8+ T cells into effector and memory T cells remains an open question
Floral advertisement scent in a changing plant-pollinators market
Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market
A Membrane-Bound Vertebrate Globin
The family of vertebrate globins includes hemoglobin, myoglobin, and other O2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O2 binding with a variable affinity (P50∼1.3–12.5 torr), depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein
Treatment of Hepatitis C as Prevention: A Modeling Case Study in Vietnam
Background: Treatment of hepatitis C (HCV) is very effective, achieving a cure in 50–90 % of patients. Besides its own good for individuals, this most likely translates in reduced transmission, but this phenomenon has yet to be fully explored. Methods and Findings: In this mathematical modeling study done in the context of Vietnam, we estimated the public health benefit that HCV therapy for injecting drug users (IDUs) may achieve. Treatment coverage of 25, 50 and 75 % of chronically HCV-infected IDUs (4 years into infection) is predicted to reduce the chronic HCV viremia prevalence respectively by 21, 37 and 50%, 11 years after full scale up to the intended coverage. At a constant 50 % coverage level, earlier treatment, 3, 2, and 1 year into infection is predicted to reduce the chronic HCV viremia prevalence by 46, 60 and 85%. In these later 3 scenarios, for every 100 treatment courses provided, a total of respectively 50, 61 and 94 new infections could be averted. These benefits were projected in the context of current low coverage of methadone maintenance therapy and needles/ syringes exchange programs, and these services expansion showed complementary preventive benefits to HCV therapy. The program treatment commitment associated with the various scenarios is deemed reasonable. Our model projections are robust under adjustment for uncertainty in the model parameter values. Conclusions: In this case study in Vietnam, we project that treatment of HCV for injecting drug users will have a preventative herd effect in addition to curing patients in need for therapy, achieving a substantial reduction in HCV transmission an
Symptomatic Acute Hepatitis C in Egypt: Diagnosis, Spontaneous Viral Clearance, and Delayed Treatment with 12 Weeks of Pegylated Interferon Alfa-2a
The aim of this study was to estimate the proportion of spontaneous viral clearance (SVC) after symptomatic acute hepatitis C and to evaluate the efficacy of 12 weeks of pegylated interferon alfa-2a in patients who did not clear the virus spontaneously.Patients with symptomatic acute hepatitis C were recruited from two "fever hospitals" in Cairo, Egypt. Patients still viremic three months after the onset of symptoms were considered for treatment with 12 weeks of pegylated interferon alfa-2a (180 microg/week).Between May 2002 and February 2006, 2243 adult patients with acute hepatitis were enrolled in the study. The SVC rate among 117 patients with acute hepatitis C was 33.8% (95%CI [25.9%-43.2%]) at three months and 41.5% (95%CI [33.0%-51.2%]) at six months. The sustained virological response (SVR) rate among the 17 patients who started treatment 4-6 months after onset of symptoms was 15/17 = 88.2% (95%CI [63.6%-98.5%]).Spontaneous viral clearance was high (41.5% six months after the onset of symptoms) in this population with symptomatic acute hepatitis C. Allowing time for spontaneous clearance should be considered before treatment is initiated for symptomatic acute hepatitis C
- …