
Chapter 8
Delayed Differentiation Makes Many
Models Compatible with Data for CD8+
T Cell Differentiation

Aridaman Pandit and Rob J. de Boer

8.1 Introduction

The adaptive immune system is characterized by its ability to mount specific
responses against many invading pathogens and to form long-lived memory to each
of these pathogens and rapidly respond when the pathogen reinfects the host. This
ability to form long-lived memory forms the basis of vaccination. CD8+ T cells
(or cytotoxic T cells) form an integral part of the adaptive immune system and
are known to mount a cytotoxic response especially against intracellular pathogens
like viruses. CD8+ T cells respond by recognizing a cognate peptide on a MHC
with their T cell receptor (TCR). Upon activation, naïve CD8+ T cells undergo
rapid proliferation producing 105 progenies [1]. In mice single epitopes from a
virus activate 100 to 1000 naïve CD8+ T cells [2, 3], which expand vigorously
and together form a total immune response of more than 107 cells. After this peak,
the CD8+ T cell population undergoes a contraction phase leaving behind about
5% of the antigen-specific CD8+ T cells. These memory CD8+ T cells are longer-
lived and can mount a rapid response in case of reinfection. For a given infection,
the magnitude and expansion and contraction pattern of CD8+ T cell response
have been shown to be highly reproducible [4]. Studies have shown that individual
naïve CD8+ T cells can produce both memory and effector cells [1]. Single-cell
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tracing studies have shown that fate of individual naïve CD8+ T cell varies, which
is probably governed by several biological and stochastic factors [4, 5]. The fate and
memory potential of individual CD8+ T cells is an active field of study.

Several models for CD8+ T cell differentiation have been proposed [6–8]. In the
‘linear differentiation’ model, effector CD8+ T cells produced during the expansion
phase either die or form memory CD8+ T cells during the contraction phase. In
the ‘progressive differentiation’ model, the strength of stimulation determines the
fate of individual CD8+ T cells [6, 7]. Excessive stimulation may lead to terminally
differentiated effector cells, while weak stimulation may lead to memory cells [6, 7].
In the ‘asymmetric division’ model, one daughter cell acquires memory potential
and the other daughter cell acquires effector potential, during the first division of
a progenitor cell [9]. Several other models have been proposed, highlighting the
roles of strength and nature of stimulation, niches and timing of differentiation, in
determining the fate of individual naïve CD8+ T cell [6–8].

Two single-cell tracing studies [4, 5] showed that fate of individual naïve CD8+
T cell is disparate. These studies demonstrated that the number of daughter cells
produced from individual naïve CD8+ T cells bearing the same TCR is extremely
variable. In both studies, the expression of surface markers CD62L and CD27 was
measured and correlated with the number of progenies produced by individual naïve
CD8+ T cells (i.e. a family of naïve T cells). CD62L marker expression negatively
correlated with family sizes, whereas CD27 marker expression was not significantly
correlated [4, 5]. This agrees with the fact that CD62L expression decreases with
cellular division [10].

Buchholz et al. [5] defined CD62L+CD27+ as central memory precursors (CM),
CD62L−CD27+ as effector memory precursors (EM) and CD62L−CD27− as
effector (F ) CD8+ T cells. Using the heterogeneity in marker distributions for
different naïve CD8+ T cell families, they showed that a linear differentiation
model from naïve to CM to EM to F cells describes their single-cell tracing
data the best. Buchholz et al. [5] modelled the proliferation and differentiation
dynamics as a standard Markov process and interestingly used both the first and
the second moments to discriminate between different models of CD8+ T cell
differentiation. Although the approach used by Buchholz et al. [5] robustly showed
that ‘memory first’ models better fit their data, all models tested assumed that
the rate of cellular differentiation and proliferation reflects an exponential process.
However, several studies have shown that the division and differentiation of T cells
is not exponential and is better described by a delayed distribution, like a gamma or a
lognormal distribution [11–14]. Here we tested how incorporation of a delay during
differentiation affects the inference that ‘memory first’ models describe the data
best. In a companion paper, we have studied the effect of non-exponential division
[8].
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8.2 Models and Results

We used ordinary differential equations to model the delayed differentiation of
CD8+ T cells by extending the model of Buchholz et al. [5], who suggested
that naïve CD8+ T cells first differentiate into central memory precursors (CM),
followed by differentiation into effector memory precursors (EM) and subsequently
into effectors (F ). We will call this original model the ‘linear basic’ model.
Importantly, the linear basic model assumes simple exponential differentiation
kinetics for different CD8+ T cell subsets. We will first show that variants of the
linear model, which allow for delayed differentiation of CD8+ T cell subsets, have
population dynamics that is comparable to the linear basic model. Subsequently,
we test whether alternative models with delayed differentiation dynamics can also
describe the CD8+ T cell subset dynamics with similar accuracy. We further
performed Gillespie simulations to test whether the predicted variance of the
alternative models is comparable to that of the linear basic model.

8.2.1 Linear Models

To create an accurate data set, we simply ran the best model proposed by Buchholz
et al. [5]. In this model, naïve CD8+ T cells (N ) differentiate into CM CD8+ T cells
at a rate n (Eq. 8.1). CM CD8+ T cells proliferate at a rate pCM and differentiate
into EM CD8+ T cells at a rate dCM (Eq. 8.2). EM CD8+ T cells proliferate at
a rate pEM and differentiate into effector CD8+ T cells at a rate dEM (Eq. 8.3).
Effector CD8+ T cells further proliferate at a rate pF (Eq. 8.4).

dN

dt
= −n · N (8.1)

dCM

dt
= n · N + pCM · CM − dCM · CM (8.2)

dEM

dt
= dCM · CM + pEM · EM − dEM · EM (8.3)

dF

dt
= dEM · EM + pF · F (8.4)

To depict the population dynamics of a typical family, we set N(0) = 1, CM(0) =
EM(0) = F(0) = 0 and observe that the first CM CD8+ T cells appear around day
1 (Fig. 8.1a, b) and that this population keeps on increasing (because pCM > dCM ;
see Table 8.1 for parameter values). EM and F CD8+ T cells appear at around day
2 and day 3, respectively, and their populations also increase over time. However,
since the growth in CM population is slower compared to that of the EM and F

populations, the fraction of the CM population declines over time (Fig. 8.1b). To
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Fig. 8.1 Various linear models. Population dynamics (a) and relative fraction (b) of different
CD8+ T cell subsets obtained from the linear basic model using the original parameter values
given in the first line of Table 8.1. Panel (c) depicts the effect of delaying the recruitment of naive
cells into the first phenotype capable of cell division (TCM). Starting with N = 103 cells, the
loss of naive cells as described by equation (8.1) is shown for KN = 0 (black: Exp) and KN = 1
(red: G1) to KN = 4 (green: G4). Panels (d) to (f) depict the population dynamics of alternate
linear models with delayed differentiation: (d) linear N3: KN = 3,KM = 0, (e) linear A3:
KN = KM = 3 and (f) linear A4: KN = KM = 4. Population means predicted by the best
fit delayed differentiation models are shown for different T cell subsets: central memory (TCM;
black lines), effector memory (TEM; red lines) and effector (f; blue lines) cells. The models were
fitted to the population means of days 5–8 (shown as filled circles) obtained from the linear basic
model given in Fig. 8.1a. The population means of days 0–4 of the original model were not used
for fitting the parameters and are shown as open circles. For the best fit parameters, see Table 8.1

match the sampling times of the original paper [5], our alternative models were
fitted to the ‘data’ at days 5 to 8 in Fig. 8.1.

In the linear basic model, the differentiation of N , CM and EM CD8+ T cells
was assumed to be an exponential process. However, several studies have shown
that the differentiation of T cells is not exponential [11–14]. So, we were interested
in the effect of delays in the model for differentiation of CD8+ T cell subsets.
In order to incorporate delays, while keeping the number of parameters constant,
we developed transit models with K compartments that approximate a gamma
distribution for large values of K . Thus, we developed a set of models where each
of the differentiation steps can be subdivided into one to several stages. In Eqs. 8.5–
8.11, we subdivide each subpopulation into k stages, where k = 0, 1, . . . , KN for
the recruitment of naive cells, and k = 0, 1, . . . , KM for the memory T cells.
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Table 8.1 The original (line 1) and the best fit parameter values obtained for the linear models

Model KN KM n dCM dEM pCM pEM pF SSR

Linear basic 0 0 2.800 0.192 0.039 0.830 1.420 1.590 −
Linear N1 1 0 3.375 0.229 0.052 0.887 1.447 1.541 0.061

Linear N2 2 0 3.850 0.393 0.061 1.067 1.398 1.463 0.075

Linear N3 3 0 4.314 0.282 0.058 0.971 1.481 1.564 0.064

Linear N4 4 0 4.688 0.388 0.029 1.091 1.428 1.726 0.088

Linear A1 1 1 3.379 0.610 0.641 1.210 2.037 1.237 0.051

Linear A2 2 2 3.865 1.200 2.525 1.764 3.825 0.361 0.234

Linear A3 3 3 4.302 1.256 2.973 1.808 4.413 0.804 0.123

Linear A4 4 4 4.722 2.598 2.383 3.105 3.598 1.130 0.214

dN0

dt
= −n · N0 (8.5)

dNk

dt
= n · Nk−1 − n · Nk, for k = 1, 2, . . . , KN (8.6)

dCM0

dt
= n · Nk + pCM · CM0 − dCM · CM0 (8.7)

dCMk

dt
= dCM · CMk−1 − dCM · CMk, for k = 1, 2, . . . , KM (8.8)

dEM0

dt
= dCM · CMk + pEM · EM0 − dEM · EM0 (8.9)

dEMk

dt
= dEM · EMk−1 − dEM · EMk, for k = 1, 2, . . . , KM (8.10)

dF

dt
= dEM · EMk + pF · F (8.11)

Our first version of this model is to only allow for stages in the differentiation of
naïve CD8+ T cells (KM = 0), and we refer to these models as the linear Nk model,
where k reflects the number of stages. Hence the linear N0 model is identical to
the original model proposed by Buchholz et al. [5]. The linear N4 model has four
stages of naïve CD8+ T cell differentiation in Eq. 8.6. In our second set of models,
we allow all differentiation steps to be non-exponential. We call these the linear
Ak models, where again the linear A0 model is identical to the original model. All
models were fitted to the data produced by running the original model, using the late
time points at days 5 to 8 (filled circles in Fig. 8.2) to estimate parameters. Parameter
estimates are provided in Table 8.1.

We could fit all linear N1–4 and linear A1–4 models to the linear basic model
with a weighted sum of squared residuals (wSSR) value < 0.25. Figure 8.1d–f
depicts three examples of delayed linear models (i.e. linear N3, linear A3 and linear
A4) to illustrate the quality of the fit. Even though the models were fitted to day 5–
8 data only, the models predict population means comparable to the day 0–4 data.
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Fig. 8.2 Population dynamics of different branching models: (a) Fate basic, (b) Branching basic
and (c) Fate A4. Population means predicted by the branching models are shown for different T
cell subsets: central memory (TCM; black lines), effector memory (TEM; red lines) and effector
(F; blue lines) cells. The models were fitted to the population means of days 5–8 (shown as filled
circles) obtained from the linear basic model given in Fig. 8.1a. The population means of day 0–
4 of the original model were not used for fitting the parameters and are shown as open circles.
Parameter values given in Table 8.2

Interestingly, in all models with a delay in naïve differentiation only, the rate of
proliferation increases with the stages of differentiation (as was described for the
original model [5]). However, this pattern is absent from the linear Akmodels where
all differentiation steps are non-exponential. Thus, the original conclusion that
the differentiation of naïve CD8+ T cells progresses through slowly proliferating
memory precursors towards rapidly proliferating effector cells [5] depends on the
assumption that differentiation is an exponential process in the linear basic model.

8.2.2 Branching and Fate Models

Since the incorporation of delay during differentiation of CD8+ T cells resulted in
similarly good fits of the models, we decided to test whether alternate models can
produce population dynamics similar to the linear basic model. We first developed
a branching model where a fraction (f ) of naïve CD8+ T cells differentiates into
effectors (F ) and the remaining into CM CD8+ T cells. These models assume a
division of labour, as a fraction of the naïve CD8+ T cells differentiates directly
into effector cells, while the remaining naïve cells differentiate into memory cells
and follow the same linear differentiation pathway towards effector cells. Thus,
replacing equations (8.7) and (8.11) with

dCM0

dt
= (1 − f ) · n · Nk + pCM · CM0 − dCM · CM0 (8.12)

dF

dt
= f · n · Nk + dEM · EMk + pF · F (8.13)
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Table 8.2 The best fit parameter values obtained for different Branching models

Modela KN KM n dCM dEM pCM pEM pF f SSR

Branching basic 0 0 2.799 0.100 0.355 0.752 1.852 0.837 0.1 0.065

Branching basic 0 0 2.799 0.091 0.782 0.759 2.309 0.061 0.2 0.068

Branching basic 0 0 2.800 0.137 0.741 0.870 2.265 0.137 0.5 0.100

Branching N1 1 0 3.375 0.124 0.319 0.797 1.827 0.920 0.1 0.131

Branching N2 2 0 3.869 0.330 0.269 1.020 1.654 0.905 0.1 0.143

Branching N3 3 0 4.313 0.545 0.381 1.334 1.788 0.708 0.5 0.189

Branching N4 4 0 4.730 0.110 0.471 0.829 2.097 0.758 0.1 0.122

Branching A1 1 1 3.374 0.618 1.634 1.319 3.099 0.433 0.5 0.101

Branching A2 2 2 3.893 1.237 1.474 1.815 2.807 1.012 0.1 0.127

Branching A3 3 3 4.307 0.871 3.922 1.462 5.567 0.666 0.1 0.164

Branching A4 4 4 4.712 1.664 3.349 2.211 4.801 1.017 0.1 0.178

Branching A4 4 4 4.725 1.931 5.734 2.567 7.159 0.180 0.5 0.145
aNote: some models exhibiting similar SSR values are not given in the table

respectively, we define our branching models. To keep the number of parameters
constant, we fixed f at either 0.1, 0.2 or 0.5.

In the first set of branching models, we allowed EM cells to differentiate into
effector CD8+ T cells (i.e. dEM > 0 in equation (8.13)), and we refer to these as
the Branching models. We found good fits (SSR ≤ 0.1) for the Branching basic
models, KN = KM = 0, for all three values of f (Table 8.2). This indicates that
the branching model where 50% of naïve CD8+ T cells differentiate directly into
effector cells can describe the population means of different CD8+ T cell subsets
as predicted by the original model (Fig. 8.2b). Subsequently, we incorporated delay
during differentiation of different CD8+ T cell subsets for the Branchingmodel. For
models with delay during differentiation, of either only naïve cells or all CD8+ T
cell subsets, we obtain good fits with a SSR ≤ 0.2 (Table 8.2).

We next developed models where the fate of the naïve CD8+ T cells was
defined before, or during, their activation. This means that a fraction of naïve cells
differentiates into memory cells only, while the remainder differentiates directly
into effector cells. This was implemented by setting dEM = 0 in Eq. (8.13), and
we refer to this as the Fate models. The fits of the Fate model were in general
worse than those of the Branching model fits, with several models having their
best fit SSR value > 0.25 (Table 8.3). The Fate basic model with f = 0.5 had
a best fit with a high SSR value of 0.464 (Table 8.3 and Fig. 8.2a). Incorporating
delays during differentiation allowed us to achieve somewhat better fits for the Fate
models (Table 8.3 and Fig. 8.2c), but overall, we found that the Branching models
outperformed the Fate models.
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Table 8.3 The best fit parameter values obtained for different Fate models

Modela KN KM n dCM pCM pEM pF f SSR

Fate basic 0 0 2.801 0.199 0.851 1.389 1.422 0.1 0.109

Fate basic 0 0 2.800 0.205 0.874 1.399 1.330 0.2 0.216

Fate basic 0 0 2.801 0.300 1.033 1.400 1.209 0.5 0.464

Fate N1 1 0 3.375 0.263 0.936 1.385 1.462 0.1 0.141

Fate N2 2 0 3.832 0.337 1.044 1.398 1.401 0.2 0.175

Fate N3 3 0 4.310 0.686 1.390 1.283 1.525 0.1 0.202

Fate N4 4 0 4.701 0.529 1.247 1.357 1.552 0.1 0.378

Fate A1 1 1 3.379 1.298 1.896 1.249 1.462 0.1 0.123

Fate A2 2 2 3.859 1.634 2.221 1.361 1.400 0.2 0.146

Fate A3 3 3 4.333 2.257 2.799 1.363 1.522 0.1 0.161

Fate A4 4 4 4.738 1.884 2.422 1.581 1.550 0.1 0.228

Fate A4 4 4 4.734 2.320 2.948 1.578 1.322 0.5 0.300
aNote: some models exhibiting similar SSR values are not given in the table

8.2.3 Variations in Family Sizes

Ideally, fitting various mathematical models to data should provide us sufficient
information to discriminate between different biological hypotheses [15, 16]. Using
data on population averages only, we have seen above that this fails to discriminate
between a linear chain and a branching model. Importantly, Buchholz et al. [5] used
variances and covariance of different T cell populations to discriminate between
different models of CD8+ T cell differentiation. To also study the stochasticity
in different CD8+ T cell subsets, we performed 10,000 Monte Carlo simulations
for each model using the Gillespie algorithm [17, 18]. We compared the mean cell
numbers and variances of CM , EM and F CD8+ T cells predicted by Gillespie
simulations for different linear models (Fig. 8.3). Since we used the parameters
obtained from the best fits, the mean cell numbers predicted by different linear
models were comparable to the original model (Fig. 8.3a). Interestingly, the variance
predicted by the original model was very high. For example, at day 8 the variance
was 227-fold larger than the mean for CM CD8+ T cells, 50,456-fold larger than
the mean for EM CD8+ T cells and 33,174-fold larger than the mean for F CD8+
T cells. This enormous variance matched the observed variation in the family sizes
[5] and provided further support to the memory first linear model.

The variance predicted by different delayed differentiation linear models was
comparable to the variance of the linear basic model (Fig. 8.3b). We compared the
means and variances obtained from the 10,000 Gillespie simulations performed for
all the Branching models with the linear basic model. Similar to the linear models,
we found that the Branching models predict means and variances comparable to the
linear basic model (Fig. 8.4). Thus, contrary to the Buchholz et al. [5] result using
exponential models, we cannot discriminate between different linear and branching
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Fig. 8.3 Comparison of means and variances predicted by various linear models. (a) The average
cell numbers and (b) variance of central memory CM , effector memory EM and effector F CD8+
T cells predicted for days 4 to 8 by the linear basic, linear N3, linear A3 and linear A4 models.
For parameter values see Table 8.1

Fig. 8.4 Comparison of means and variances predicted by various Branching and Fate models.
(a) The average cell numbers and (b) variance of central memory CM , effector memory EM and
effector F CD8+ T cells predicted for days 4 to 8 by the linear basic, Branching basic (f = 0.5),
Fate basic (f = 0.5) and Branching A4 (f = 0.1) models. For parameter values see Tables 8.2
and 8.3
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Fig. 8.5 Different branching models exhibit variability in marker distribution. (a) Day 6 and (b)
day 8 CD62L and CD27 marker distributions are plotted against family size distribution for the
Branching basic model (green circles) and the linear basic model (yellow circles). (c) Day 6 and
(d) day 8, the same CD62L and CD27 marker distributions for the Branching A4 model (green
circles) and linear basic model (yellow circles)

pathways using their predicted means and variances, when these pathways involve
non-exponential differentiation steps.

In the single-cell tracing experiments of Buchholz et al. [5] and Gerlach et al.
[4], the number of daughter cells produced by individual naïve CD8+ T cell also
exhibited wide heterogeneity in CD62L and CD27 marker distribution. Since CM
cells were defined as CD62L+CD27+ and EM cells as CD62L−CD27+ [4, 5],
we plotted the CD62L and CD27 marker distribution predicted by the Branching
models and compared it to the marker distribution predicted by the original linear
basic model. The Branching basic model predicted a CD62L marker distribution
comparable to the linear basic model (Fig. 8.5a, b), i.e. a high variability in the
number of CD62L+ CD8+ T cells per family size at day 6 and at day 8. The
Branching basic model CD8+ T cells exhibited a rather dichotomous distribution,
i.e. most families are CD27+ with very few cells being CD27− in them and most
of the remaining families being typically CD27− with very few cells being CD27+
in them (Fig. 8.5a, b). Thus, there were comparatively fewer families containing
intermediate fraction of CD27+ cells. Even though delayed differentiation in the
Branching model resulted in comparable SSR values to the Branching basic model,
we found that models like Branching A4 predicted CD62L and CD27 marker
variabilities that were comparable to the linear basic model (Fig. 8.5c, d). Overall
we conclude that various models with non-exponential differentiation steps can
predict similar population dynamics as the original model.
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8.3 Conclusion

We used ordinary differential equation models to test how delays incorporated
as transit compartments during cellular differentiation change the behaviour and
prediction of different CD8+ T cell differentiation models. Using a carefully
designed set of single-cell tracing experiments, Buchholz et al. [5] showed that a
linear differentiation model with progressive differentiation of naïve CD8+ T cells
to memory precursors to effector cells best fitted their data. Moreover, Buchholz
et al. [5] showed that using variance and covariance of the data helps to choose
between different models. However, Buchholz et al. [5] only considered models
where cellular differentiation obeys a single exponential process. We show that
allowing differentiation to be non-exponential can predict very similar dynamics
and showed that a Branching model considering a non-linear pathway can have
comparable population dynamics for the CD8+ T cell subsets. We found that all
models predicted comparable means and variances for the best fit parameter sets,
making it difficult to distinguish between them. Comparing family sizes with marker
distributions, we found that branching models that allow non-exponential differenti-
ation perform better than the branching models that consider exponential functions
for differentiation. Since allowing for non-exponential differentiation results in
several models with comparable mean population dynamics and stochasticity, we
think that further studies are required to identify the correct pathway of CD8+ T
cell differentiation.

8.4 Methods

We first generated data using the linear basic model using the parameters given in
Buchholz et al. [5] (see Table 8.1). The models were fitted to the log10 transformed
total cell numbers obtained from the linear basic model. We used R package FME
package with grind.R as a wrapper around FME to perform all the model fitting
[19, 20]. Because the minimization of the sum of squared residuals (SSR) was
not consistently achieved in iteration of the optimization gradient descent methods
(like Nelder-Mead or quasi-Newton method like L-BFGS-B), we performed the
minimization by first running a pseudorandom-search algorithm to achieve SSR
values ≤ 0.5 (if possible) and then performed L-BFGS-B and Nelder-Mead
iteratively until they converged on stable SSR values.

To perform Monte Carlo simulations using Gillespie algorithm, we used the
StochKit2 software [21]. Different models were written in the form of kinetic
equations, and 10,000 Gillespie instances were used for simulating CD8+ T cell
differentiation from day 0 to day 8. The means and variances were calculated using
the 10,000 Gillespie simulations. Trajectories of individual naïve CD8+ T cells and
its progenies were used to compute marker heterogeneity and family sizes on days
6 and 8. The figures were plotted in MATLAB and R [22, 23].
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