132 research outputs found

    The Response of Giant Stars To Dynamical-Timescale Mass Loss

    Full text link
    We study the response of giant stars to mass loss. One-dimensional simulations of red and asymptotic giant branch stars with mass loss rates from 10310^{-3} up to a few \msun/yr show in no case any significant radius increase. The largest radius increase of 0.2% was found in the case with the lowest mass loss rate. For dynamical-timescale mass loss rates, that may be encountered during a common envelope phase, the evolution is not adiabatic. The superadiabatic outer layer of the giant's envelope has a local thermal timescale comparable to the dynamical timescale. Therefore, this layer has enough time to readjust thermally. Moreover, the giant star is driven out of hydrostatic equilibrium and evolves dynamically. In these cases no increase of the stellar radius with respect to its initial value is found. If the mass loss rate is high enough, the superadiabaticity of the outer layer is lost progressively and a radiative zone forms due to a combination of thermal and dynamical readjustment. Conditions for unstable mass transfer based on adiabatic mass loss models that predict a significant radius increase, may need to be re-evaluated.Comment: 9 pages, 11 figures, accepted for publication in ApJ. Minor changes since previous versio

    The Association of Cusp-Aligned Arcs With Plasma in the Magnetotail Implies a Closed Magnetosphere

    Get PDF
    We investigate a 15-day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp-aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13 RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter-streaming ions and double loss-cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual-lobe reconnection. Our finding forces a significant re-evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF

    Stellar adiabatic mass loss model and applications

    Full text link
    Roche-lobe overflow and common envelope evolution are very important in binary evolution, which is believed to be the main evolutionary channel to hot subdwarf stars. The details of these processes are difficult to model, but adiabatic expansion provides an excellent approximation to the structure of a donor star undergoing dynamical time scale mass transfer. We can use this model to study the responses of stars of various masses and evolutionary stages as potential donor stars, with the urgent goal of obtaining more accurate stability criteria for dynamical mass transfer in binary population synthesis studies. As examples, we describe here several models with the initial masses equal to 1 Msun and 10 Msun, and identify potential limitations to the use of our results for giant-branch stars.Comment: 7 pages, 5 figures,Accepted for publication in AP&SS, Special issue Hot Sub-dwarf Stars, in Han Z., Jeffery S., Podsiadlowski Ph. ed

    On the alpha formalism for the common envelope interaction

    Full text link
    The {\alpha}-formalism is a common way to parametrize the common envelope interaction between a giant star and a more compact companion. The {\alpha} parameter describes the fraction of orbital energy released by the companion that is available to eject the giant star's envelope. By using new, detailed stellar evolutionary calculations we derive a user-friendly prescription for the {\lambda} parameter and an improved approximation for the envelope binding energy, thus revising the {\alpha} equation. We then determine {\alpha} both from simulations and observations in a self consistent manner. By using our own stellar structure models as well as population considerations to reconstruct the primary's parameters at the time of the common envelope interaction, we gain a deeper understanding of the uncertainties. We find that systems with very low values of q (the ratio of the companion's mass to the mass of the primary at the time of the common envelope interaction) have higher values of {\alpha}. A fit to the data suggests that lower mass companions are left at comparable or larger orbital separations to more massive companions. We conjecture that lower mass companions take longer than a stellar dynamical time to spiral in to the giant's core, and that this is key to allowing the giant to use its own thermal energy to help unbind its envelope. As a result, although systems with light companions might not have enough orbital energy to unbind the common envelope, they might stimulate a stellar reaction that results in the common envelope ejection.Comment: 17 pages, 8 figures. Accepted by MNRA

    The association of cusp‐Aligned arcs with plasma in the magnetotail implies a closed magnetosphere

    Get PDF
    We investigate a 15-day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp-aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13 RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter-streaming ions and double loss-cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual-lobe reconnection. Our finding forces a significant re-evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF

    Evolutionary constraints on the long-period subdwarf B binary PG1018-047

    Get PDF
    We have revisited the sdB+K-star long-period binary PG 1018–047 based on 20 new high-resolution Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph spectra that provided regular coverage over a period of more than 26  m. We refine the period and establish that the orbit is significantly eccentric (P = 751.6 ± 1.9 d and e = 0.049 ± 0.008). A simultaneous fit derived from the narrow metal lines visible in the spectrum of the sdB star and the metal lines in the red part of the spectrum that originate from the companion provides the mass ratio, MMS/MsdB = 1.52 ± 0.04, for the system. From an NLTE model atmosphere analysis of the combined spectra, we find Teff = 29900 ± 330 K, log g = 5.65 ± 0.06 dex and log(nHe/nH) = –3.98 ± 0.16 dex for the primary, consistent with a B-type hot subdwarf star. The spectral contribution of the companion is consistent with a K5V-type star. With the companion having a mass of only ∼ 0.7 M⊙, this system lies close to the boundary below which stable Roche lobe overflow (RLOF) cannot be supported. To model the evolution of such a system, we have extended earlier MESA models towards lower companion masses. We find that both phase-dependent mass loss during RLOF, when 30 to 40 per cent of the available mass is lost through the outer Lagrange point and phase-dependent mass loss during RLOF in combination with a circumbinary disc of maximum MCB = 0.001 M⊙ could have formed the PG 1018–047 binary system

    Reappraising Social Insect Behavior through Aversive Responsiveness and Learning

    Get PDF
    Background: The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. Methodology: To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Principal Findings: Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsiv

    Production and characterization of murine models of classic and intermediate maple syrup urine disease

    Get PDF
    BACKGROUND: Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. MSUD has several clinical phenotypes depending on the degree of enzyme deficiency. Current treatments are not satisfactory and require new approaches to combat this disease. A major hurdle in developing new treatments has been the lack of a suitable animal model. METHODS: To create a murine model of classic MSUD, we used gene targeting and embryonic stem cell technologies to create a mouse line that lacked a functional E2 subunit gene of branched-chain keto acid dehydrogenase. To create a murine model of intermediate MSUD, we used transgenic technology to express a human E2 cDNA on the knockout background. Mice of both models were characterized at the molecular, biochemical, and whole animal levels. RESULTS: By disrupting the E2 subunit gene of branched-chain keto acid dehydrogenase, we created a gene knockout mouse model of classic MSUD. The homozygous knockout mice lacked branched-chain keto acid dehydrogenase activity, E2 immunoreactivity, and had a 3-fold increase in circulating branched-chain amino acids. These metabolic derangements resulted in neonatal lethality. Transgenic expression of a human E2 cDNA in the liver of the E2 knockout animals produced a model of intermediate MSUD. Branched-chain keto acid dehydrogenase activity was 5–6% of normal and was sufficient to allow survival, but was insufficient to normalize circulating branched-chain amino acids levels, which were intermediate between wildtype and the classic MSUD mouse model. CONCLUSION: These mice represent important animal models that closely approximate the phenotype of humans with the classic and intermediate forms of MSUD. These animals provide useful models to further characterize the pathogenesis of MSUD, as well as models to test novel therapeutic strategies, such as gene and cellular therapies, to treat this devastating metabolic disease

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Drone aggregation behavior in the social wasp Vespula germanica (Hymenoptera: Vespidae): Effect of kinship and density

    Get PDF
    Inbreeding can have negative consequences on population viability because of the reduced fitness of the progeny. In general, most species have developed mechanisms to minimize inbreeding such as dispersal and kin avoidance behavior. In the eusocial Hymenoptera, related individuals typically share a common nest and have relatively short mating periods, this could lead to inbreeding, and because of their single?locus complementary sex determination system, it may generate diploid males that could result in infertile triploid progeny representing a cost for the colony. Vespula germanica, is an eusocial wasp that has invaded many parts of the world, despite likely facing a reduced genetic pool during the arrival phases. We ask whether male wasp display specific aggregation behavior that favors genetic diversity, key to reduce inbreeding. Through a set of laboratory experiments, we investigated the effects of drone nestmateship and density on the aggregation behavior of V. germanica drones. We show that drones avoid aggregating with their nestmates at all densities while non-nestmates are avoided only at high densities. This suggests that lek genetic diversity and density could be regulated through drone behavior and in the long run minimize inbreeding favoring invasion success.Fil: Masciocchi, Maité. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Angeletti, Bárbara. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Corley, Juan Carlos. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Martinez Von Ellrichshausen, Andres Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentin
    corecore