82 research outputs found

    Optimizing anti-gene oligonucleotide ‘Zorro-LNA’ for improved strand invasion into duplex DNA

    Get PDF
    Zorro-LNA (Zorro) is a newly developed, oligonucleotide (ON)-based, Z-shaped construct with the potential of specific binding to each strand of duplex DNA. The first-generation Zorros are formed by two hybridized LNA/DNA mixmers (2-ON Zorros) and was hypothesized to strand invade. We have now established a method, which conclusively demonstrates that an LNA ON can strand invade into duplex DNA. To make Zorros smaller in size and easier to design, we synthesized 3′–5′–5′–3′ single-stranded Zorro-LNA (ssZorro) by using both 3′- and 5′-phosphoramidites. With ssZorro, a significantly greater extent and rate of double-strand invasion (DSI) was obtained than with conventional 2-ON Zorros. Introducing hydrophilic PEG-linkers connecting the two strands did not significantly change the rate or extent of DSI as compared to ssZorro with a nucleotide-based linker, while the longest alkyl-chain linker tested (36 carbons) resulted in a very slow DSI. The shortest alkyl-chain linker (3 carbons) did not reduce the extent of DSI of ssZorro, but significantly decreased the DSI rate. Collectively, ssZorro is smaller in size, easier to design and more efficient than conventional 2-ON Zorro in inducing DSI. Analysis of the chemical composition of the linker suggests that it could be of importance for future therapeutic considerations

    Genetic and expression studies of SMN2 gene in Russian patients with spinal muscular atrophy type II and III

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal muscular atrophy (SMA type I, II and III) is an autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron gene (<it>SMN1</it>). <it>SMN2 </it>is a centromeric copy gene that has been characterized as a major modifier of SMA severity. SMA type I patients have one or two <it>SMN2 </it>copies while most SMA type II patients carry three <it>SMN2 </it>copies and SMA III patients have three or four <it>SMN2 </it>copies. The <it>SMN1 </it>gene produces a full-length transcript (FL-SMN) while <it>SMN2 </it>is only able to produce a small portion of the FL-SMN because of a splice mutation which results in the production of abnormal SMNΔ7 mRNA.</p> <p>Methods</p> <p>In this study we performed quantification of the <it>SMN2 </it>gene copy number in Russian patients affected by SMA type II and III (42 and 19 patients, respectively) by means of real-time PCR. Moreover, we present two families consisting of asymptomatic carriers of a homozygous absence of the <it>SMN1 </it>gene. We also developed a novel RT-qPCR-based assay to determine the FL-SMN/SMNΔ7 mRNA ratio as SMA biomarker.</p> <p>Results</p> <p>Comparison of the <it>SMN2 </it>copy number and clinical features revealed a significant correlation between mild clinical phenotype (SMA type III) and presence of four copies of the <it>SMN2 </it>gene. In both asymptomatic cases we found an increased number of <it>SMN2 </it>copies in the healthy carriers and a biallelic <it>SMN1 </it>absence. Furthermore, the novel assay revealed a difference between SMA patients and healthy controls.</p> <p>Conclusions</p> <p>We suggest that the <it>SMN2 </it>gene copy quantification in SMA patients could be used as a prognostic tool for discrimination between the SMA type II and SMA type III diagnoses, whereas the FL-SMN/SMNΔ7 mRNA ratio could be a useful biomarker for detecting changes during SMA pharmacotherapy.</p

    Modifier Effects between Regulatory and Protein-Coding Variation

    Get PDF
    Genome-wide associations have shown a lot of promise in dissecting the genetics of complex traits in humans with single variants, yet a large fraction of the genetic effects is still unaccounted for. Analyzing genetic interactions between variants (epistasis) is one of the potential ways forward. We investigated the abundance and functional impact of a specific type of epistasis, namely the interaction between regulatory and protein-coding variants. Using genotype and gene expression data from the 210 unrelated individuals of the original four HapMap populations, we have explored the combined effects of regulatory and protein-coding single nucleotide polymorphisms (SNPs). We predict that about 18% (1,502 out of 8,233 nsSNPs) of protein-coding variants are differentially expressed among individuals and demonstrate that regulatory variants can modify the functional effect of a coding variant in cis. Furthermore, we show that such interactions in cis can affect the expression of downstream targets of the gene containing the protein-coding SNP. In this way, a cis interaction between regulatory and protein-coding variants has a trans impact on gene expression. Given the abundance of both types of variants in human populations, we propose that joint consideration of regulatory and protein-coding variants may reveal additional genetic effects underlying complex traits and disease and may shed light on causes of differential penetrance of known disease variants

    Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT–PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival

    Imaging of Zebrafish In Vivo with Second-Harmonic Generation Reveals Shortened Sarcomeres Associated with Myopathy Induced by Statin

    Get PDF
    We employed second-harmonic generation (SHG) imaging and the zebrafish model to investigate the myopathy caused by statin in vivo with emphasis on the altered microstructures of the muscle sarcomere, the fundamental contractile element of muscles. This approach derives an advantage of SHG imaging to observe the striated skeletal muscle of living zebrafish based on signals produced mainly from the thick myosin filament of sarcomeres without employing exogenous labels, and eliminates concern about the distortion of muscle structures caused by sample preparation in conventional histological examination. The treatment with statin caused a significantly shortened sarcomere relative to an untreated control (1.73±0.09 µm vs 1.91±0.08 µm, P<0.05) while the morphological integrity of the muscle fibers remained largely intact. Mechanistic tests indicated that this microstructural disorder was associated with the biosynthetic pathway of cholesterol, or, specifically, with the impaired production of mevalonate by statins. This microstructural disorder exhibited a strong dependence on both the dosage and the duration of treatment, indicating a possibility to assess the severity of muscle injury according to the altered length of the sarcomeres. In contrast to a conventional assessment of muscle injury using clinical biomarkers in blood, such as creatine kinase that is released from only disrupted myocytes, the ability to determine microstructural modification of sarcomeres allows diagnosis of muscle injury before an onset of conventional clinical symptoms. In light of the increasing prevalence of the incidence of muscle injuries caused by new therapies, our work consolidates the combined use of the zebrafish and SHG imaging as an effective and sensitive means to evaluate the safety profile of new therapeutic targets in vivo

    Carrier Screening for Spinal Muscular Atrophy (SMA) in 107,611 Pregnant Women during the Period 2005–2009: A Prospective Population-Based Cohort Study

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is the most common neuromuscular autosomal recessive disorder. The American College of Medical Genetics has recently recommended routine carrier screening for SMA because of the high carrier frequency (1 in 25-50) as well as the severity of that genetic disease. Large studies are needed to determine the feasibility, benefits, and costs of such a program. METHODS AND FINDINGS: This is a prospective population-based cohort study of 107,611 pregnant women from 25 counties in Taiwan conducted during the period January 2005 to June 2009. A three-stage screening program was used: (1) pregnant women were tested for SMA heterozygosity; (2) if the mother was determined to be heterozygous for SMA (carrier status), the paternal partner was then tested; (3) if both partners were SMA carriers, prenatal diagnostic testing was performed. During the study period, a total of 2,262 SMA carriers with one copy of the SMN1 gene were identified among the 107,611 pregnant women that were screened. The carrier rate was approximately 1 in 48 (2.10%). The negative predictive value of DHPLC coupled with MLPA was 99.87%. The combined method could detect approximately 94% of carriers because most of the cases resulted from a common single deletion event. In addition, 2,038 spouses were determined to be SMA carriers. Among those individuals, 47 couples were determined to be at high risk for having offspring with SMA. Prenatal diagnostic testing was performed in 43 pregnant women (91.49%) and SMA was diagnosed in 12 (27.91%) fetuses. The prevalence of SMA in our population was 1 in 8,968. CONCLUSION: The main benefit of SMA carrier screening is to reduce the burden associated with giving birth to an affected child. In this study, we determined the carrier frequency and genetic risk and provided carrier couples with genetic services, knowledge, and genetic counseling

    SMA CARNI-VAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy

    Get PDF
    Multiple lines of evidence have suggested that valproic acid (VPA) might benefit patients with spinal muscular atrophy (SMA). The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and l-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2–8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children.This study involved 33 genetically proven type 3 SMA subjects ages 3–17 years. Subjects underwent two baseline assessments over 4–6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend), timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP), handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores.Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful.This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers
    corecore