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of Ploieşti, Bulevardul Bucureşti
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1 Introduction
The theory of Chen invariants, initiated by Prof. B.-Y. Chen in a seminal paper published
in  [], is presently one of the most interesting research topic in differential geometry
of submanifolds. The author’s original motivation to introduce new types of Riemannian
invariants, known as δ-invariants or Chen invariants, was the need to provide answers to
an open question raised by Chern concerning the existence of minimal immersions into
a Euclidean space of arbitrary dimension []. In fact, due the lack of control of the ex-
trinsic properties of the submanifolds by the known intrinsic invariants, no solutions to
Chern’s problem were known before the invention of Chen invariants (see []). There-
fore, in [], Chen obtained a necessary condition for the existence of minimal isometric
immersion from a given Riemannian manifold M into Euclidean space and established
a sharp inequality for a submanifold in a real space form using the scalar curvature and
the sectional curvature (both being intrinsic invariants) and squared mean curvature (the
main extrinsic invariant). On the other hand, in [], Chen obtained inequalities between
the k-Ricci curvature, the squared mean curvature and the shape operator for submani-
folds in real space forms with arbitrary codimensions. These inequalities are also sharp,
andmany nice classes of submanifolds realize equality in all above inequalities. Since then
many papers concerning Chen invariants and inequalities have appeared in the literature
for different classes of submanifolds in various ambient spaces, like complex space forms
[–], cosymplectic space forms [–], Sasakian space forms [–], locally conformal
Kähler space forms [–], generalized complex space forms [–], locally conformal
almost cosymplectic manifolds [, ], (κ ,μ)-contact space forms [, ], Kenmotsu
space forms [, ], S-space forms [, ], T-space forms []; see also [] and refer-
ences therein.
In the last decade, Chen-like inequalities were extended in the quaternionic setting. It

is the main purpose of this paper to present the evolution of these inequalities for sub-
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manifolds in quaternionic space forms, to survey some recent results on this topic and to
propose a set of natural problems in the field.

2 Preliminaries
2.1 Riemannian invariants
In this subsectionwe recall some basic concepts concerningChen invariants, usingmainly
[].
Let M be an n-dimensional Riemannian manifold. We denote by K(π ) the sectional

curvature of M associated with a plane section π ⊂ TpM, p ∈ M. If {e, . . . , en} is an or-
thonormal basis of the tangent space TpM, the scalar curvature τ at p is defined by

τ (p) =
∑

≤i<j≤n

K(ei ∧ ej). ()

One denotes

(infK)(p) = inf
{
K(π )|π ⊂ TpM,dimπ = 

}
()

and the Chen first invariant is given by

δM(p) = τ (p) – (infK)(p). ()

Suppose L is an r-dimensional subspace of TpM, r ≥  and {e, . . . , er} an orthonormal
basis of L. We define the scalar curvature τ (L) of the r-plane section L by

τ (L) =
∑

≤α<β≤r

K(eα ∧ eβ ). ()

For an integer k ≥ , we denote by S(n,k) the set of k-tuples (n, . . . ,nk) of integers ≥ 
satisfying n < n, n + · · · + nk ≤ n. We denote by S(n) the set of unordered k-tuples with
k ≥  for a fixed n.
For each k-tuples (n, . . . ,nk) ∈ S(n), Chen introduced a Riemannian invariant δ(n, . . . ,

nk) defined by

δ(n, . . . ,nk)(p) = τ (p) – S(n, . . . ,nk)(p), ()

where

S(n, . . . ,nk)(p) = inf
{
τ (L) + · · · + τ (Lk)

}
, ()

L, . . . ,Lk running over all k mutually orthogonal subspaces of TpM such that dimLj = nj,
j ∈ {, . . . ,k}.Wenote that theChen invariantwith k =  is nothing but the scalar curvature.
Also, we denote by d(n, . . . ,nk) and b(n, . . . ,nk) the real constants given by

d(n, . . . ,nk) =
n(n + k –  –

∑k
j= nj)

(n + k –
∑k

j= nj)

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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and

b(n, . . . ,nk) =
n(n – ) –

∑k
j= nj(nj – )


.

For a k-plane section L of TpM, p ∈ M, and X a unit vector in L, one can choose an
orthonormal basis {e, . . . , ek} of L such that e = X. Then the Ricci curvature of L at X,
denoted RicL(X), is defined by

RicL(X) =
k∑
j=

K(X ∧ ej). ()

We note that such a curvature is called a k-Ricci curvature.
For an integer k,  ≤ k ≤ n, B.-Y. Chen introduced a Riemannian invariant �k defined

by

�k(p) =


k – 
inf

{
RicL(X)|L,X

}
, p ∈M, ()

where L runs over all k-plane sections in TpM and X runs over all unit vectors in L.
It is well known that all these above invariants have many interesting applications to

several fields of mathematics (see []).

2.2 Quaternionic Kähler manifolds
The geometry of Riemannian structures, complex structures, almost contact structures,
hypercomplex structures, quaternionic and Cauchy-Riemann structures belongs to the
general theory of the G-structures, a domain of great interest in modern differential ge-
ometry, in global analysis and mathematical physics. Quaternionic manifolds correspond
to the reduction of the structural group at GL(n,H) · Sp(). From the metric viewpoint,
the most interesting is the case of quaternionic Kähler manifolds, which corresponds to
the reduction of the holonomy at a subgroup of Sp(n) · Sp(). They appear in Berger’s list
for possible holonomy groups of irreducible Riemannian manifolds []. We give in this
subsection a quick review of basic definitions and properties concerning the differential
geometry of manifolds endowed with quaternionic structures. For details, see [].
Let M be a differentiable manifold and assume that there is a rank -subbundle σ of

End(TM) such that a local basis {J, J, J} exists on sections of σ satisfying for all α ∈
{, , }:

Jα = –Id, JαJα+ = –Jα+Jα = Jα+, ()

where Id denotes the identity tensor field of type (, ) on M and the indices are taken
from {, , } modulo . Then the bundle σ is called an almost quaternionic structure on
M and {J, J, J} is called a canonical local basis of σ . Moreover, (M,σ ) is said to be an
almost quaternionic manifold. It is easy to see that any almost quaternionic manifold is of
dimension m,m ≥ .
A Riemannian metric g onM is said to be adapted to the almost quaternionic structure

σ if it satisfies:

g(JαX, JαY ) = g(X,Y ), ∀α ∈ {, , } ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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for all vector fields X, Y on M and any canonical local basis {J, J, J} of σ . Moreover,
(M,σ , g) is said to be an almost quaternionic Hermitian manifold.
If the bundle σ is parallel with respect to the Levi-Civita connection∇ of g, then (M,σ , g)

is said to be a quaternionic Kähler manifold. Equivalently, locally defined -forms ω, ω,
ω exist such that we have, for all α ∈ {, , },

∇XJα = ωα+(X)Jα+ –ωα+(X)Jα+ ()

for any vector field X onM, where the indices are taken from {, , } modulo .
We remark that any quaternionic Kählermanifold is an Einsteinmanifold, provided that

dimM >  (see [–]).
Let (M,σ , g) be a quaternionic Kähler manifold and let X be a non-null vector on M.

Then the -plane spanned by {X, JX, JX, JX}, denoted by Q(X), is called a quaternionic
-plane. Any -plane in Q(X) is called a quaternionic plane. The sectional curvature of
a quaternionic plane is called a quaternionic sectional curvature. A quaternionic Kähler
manifold is a quaternionic space form if its quaternionic sectional curvatures are equal
to a constant, say c. It is well-known that a quaternionic Kähler manifold (M,σ , g) is a
quaternionic space form, denoted M(c), if and only if its curvature tensor is given by (see
[])

R(X,Y )Z =
c


{
g(Z,Y )X – g(X,Z)Y +

∑
α=

[
g(Z, JαY )JαX

– g(Z, JαX)JαY + g(X, JαY )JαZ
]}

()

for all vector fields X, Y , Z on M and any local basis {J, J, J} of σ . We note that some
interesting characterizations of quaternionic space forms were obtained in [].
For a submanifoldM of a quaternion Kähler manifold (M,σ , g), we denote by g the met-

ric tensor induced onM. If∇ is the covariant differentiation induced onM, the Gauss and
Weingarten formulas are given by

∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ �(TM) ()

and

∇XN = –ANX +∇⊥
X N , ∀X ∈ �(TM),∀N ∈ �

(
TM⊥)

, ()

where h is the second fundamental form ofM,∇⊥ is the connection on the normal bundle
and AN is the shape operator ofM with respect to N . The shape operator AN is related to
h by

g(ANX,Y ) = g
(
h(X,Y ),N

)

for all X,Y ∈ �(TM) and N ∈ �(TM⊥).

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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If {e, . . . , en} is an orthonormal basis of TpM and {en+, . . . , em} is an orthonormal basis
of T⊥

p M, where p ∈M, we denote by H the mean curvature vector, that is,

H(p) =

n

n∑
i=

h(ei, ei).

Also, we set

hrij = g
(
h(ei, ej), er

)
, i, j ∈ {, . . . ,n}, r ∈ {n + , . . . , m}

and

‖h‖(p) =
n∑

i,j=

g
(
h(ei, ej),h(ei, ej)

)
.

The submanifold M is called totally geodesic if the second fundamental form vanishes
identically and totally umbilical if there is a real number λ such that h(X,Y ) = λg(X,Y )H
for any tangent vectors X, Y onM. IfH = , then the submanifoldM is said to beminimal.

3 Fundamental inequalities involving Chen invariants and the squaredmean
curvature

For a Riemannian submanifold Mn of a real space form M with constant sectional cur-
vature c, Chen [] proved the following inequality for the Riemannian invariant δM of M,
known as the first Chen inequality:

δM ≤ n – 


[
n

n – 
‖H‖ + c(n + )

]
. ()

The submanifoldM is said to satisfy Chen’s equality if the equality case of () holds iden-
tically.
In quaternionic Kähler ambient, the first classes of submanifolds which have been intro-

duced and studied were quaternionic [] and totally real submanifolds []. A subman-
ifold M in a quaternionic Kähler manifold (M,σ , g) is called a quaternionic submanifold
(resp. a totally real submanifold) if each tangent space ofM is carried into itself (resp. into
the normal space) by each section in σ . An n-dimensional totally real submanifold of a
quaternionic space formMm(c) is said to be a Lagrangian submanifold if n =m. It is well
known that a quaternionic submanifold is totally geodesic, so the first class of interest from
Chen’s inequalities viewpoint is given by the totally real submanifolds. In [], the valid-
ity of the inequality () was proved for totally real submanifolds in a quaternionic space
formM(c) of quaternionic sectional curvature c, and Chen’s equality was interpreted in
terms of eigenvalues and eigenspaces of theWeingarten operators of the submanifold. As
a consequence, Hong and Houh obtained the following interesting result.

Theorem . [] Every Lagrangian submanifold of a quaternionic space form satisfying
Chen’s equality is minimal.

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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In [], Şahin introduced the concept of slant submanifolds as a natural generalization
of both quaternionic and totally real submanifolds. A submanifold M of a quaternionic
Kähler manifold M is said to be a slant submanifold if for each non-zero vector X tan-
gent to M at p, the angle θ (X) between Jα(X) and TpM, α ∈ {, , } is constant, i.e., it
does not depend on choice of p ∈ M and X ∈ TpM. We can easily see that quaternionic
submanifolds are slant submanifolds with θ =  and totally-real submanifolds are slant
submanifolds with θ = π

 . A slant submanifold of a quaternionic Käler manifold is said to
be proper (or θ -slant proper) if it is neither quaternionic nor totally real.
In [], the present author obtained the generalization of the first Chen inequality to

the case of slant submanifolds in quaternionic space forms as follows.

Theorem . [] Let Mn be a θ -slant proper submanifold of a quaternionic space form
Mm(c). Then, for each point p ∈ M, we have

δM(p) ≤ n – 


[
n

n – 
‖H‖ + c


(
n +  +  cos θ

)]
. ()

The equality in () holds at p ∈ M if and only if there exists an orthonormal basis
{e, . . . , en} of TpM and an orthonormal basis {en+, . . . , em} of T⊥

p M such that the shape
operators Ar ≡ Aer , r ∈ {n + , . . . , m}, take the following forms:

An+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a   · · · 
 a  · · · 
  a + b · · · 
...

...
...

. . .
...

   · · · a + b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

()

and

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ar br  · · · 
ar –br  · · · 
   · · · 
...

...
...

. . .
...

   · · · 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, r ∈ {n + , . . . , m}. ()

The secondChen fundamental inequality, stated in [], asserts that for any submanifold
Mn of a real space formM with constant sectional curvature c, we have

δ(n, . . . ,nk) ≤ d(n, . . . ,nk)‖H‖ + b(n, . . . ,nk)c ()

for any k-tuples (n, . . . ,nk) ∈ S(n). Immersion of a submanifold which realizes equality in
this inequality at every point is said to be an ideal immersion.
In [], Yoon proved that the inequality () is also true for totally real submanifolds in a

quaternionic space forms of quaternionic sectional curvature c. This inequality was later
generalized for slant submanifolds in quaternionic space forms as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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Theorem . [] If Mn is a θ -slant proper submanifold of a quaternionic space form
Mm(c), then we have

δ(n, . . . ,nk) ≤ d(n, . . . ,nk)‖H‖ + b(n, . . . ,nk)
c

+
c


(
n –

k∑
j=

nj

)
cos θ ()

for any k-tuples (n, . . . ,nk) ∈ S(n).
The equality in () holds at p ∈ M if and only if there exists an orthonormal basis

{e, . . . , en} of TpM and an orthonormal basis {en+, . . . , em} of T⊥
p M such that the shape

operators Ar ≡ Aer , r ∈ {n + , . . . , m}, take the following forms:

An+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a   · · · 
 a  · · · 
  a · · · 
...

...
...

. . .
...

   · · · an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

()

and

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Br
 · · ·   · · · 
...

. . .
...

...
. . .

...
 · · · Br

k  · · · 
 · · ·  cr · · · 
...

. . .
...

...
. . .

...
 · · ·   · · · cr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r ∈ {n + , . . . , m}, ()

where a, . . . ,an satisfy

a + · · · + an = · · · = an+···+nk–+ + · · · + an+···+nk = an+···+nk+ = · · · = an

and each Br
j is a symmetric nj × nj submatrix satisfying:

trace
(
Br

)
= · · · = trace

(
Br
k
)
= cr .

4 Fundamental inequalities involving the Ricci curvature and the squared
mean curvature

In [], Chen established a sharp relationship involving the Ricci curvature and the squared
mean curvature for an arbitrary n-dimensional Riemannian submanifold of a real space
form of constant sectional curvature c,

Ric(X) ≤ (n – )c +
n


‖H‖, ()

which is known as the Chen-Ricci inequality. In [], Liu obtained the same inequality for
totally real submanifolds in quaternionic space forms.
A submanifoldM of a quaternion Kähler manifold (M,σ , g) is said to be a quaternionic

CR-submanifold if there exists two orthogonal complementary distributionsD andD⊥ on

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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M such that D is invariant under quaternionic structure and D⊥ is totally real (see []).
An estimation of the Ricci curvature of a quaternionic CR-submanifold in a quaternionic
space form has been established in [], as follows.

Theorem . [] Let M be an n-dimensional quaternionic CR-submanifold of a quater-
nionic space form M(c). Then:

(i) For each unit vector X ∈D⊥
p , we have

Ric(X)≤ (n – )c


+
n


‖H‖. ()

(i) For each unit vector X ∈Dp, we have

Ric(X)≤ (n + )c


+
n


‖H‖. ()

(ii) If H(p) = , then a unit tangent vector X at p satisfies the equality case of () (respec-
tively ()) if and only ifX ∈D⊥

p ∩Np (respectivelyX ∈Dp∩Np),whereNp is the relative
null space ofM at the point p ∈M defined by

Np =
{
Z ∈ TpM|h(Z,Y ) = ,∀Y ∈ TpM

}
.

We note that an optimal inequality concerning the Ricci curvature for quaternionic
CR-submanifolds of quaternionic space forms with a semi-symmetric metric connection
was obtained in []. It is clear that, although quaternionic CR-submanifolds are also the
generalization of both quaternionic and totally real submanifolds, there exists no inclu-
sion between the two classes of quaternionic CR-submanifolds and slant submanifolds.
The following estimation of the Ricci curvature for slant submanifolds in quaternionic
space forms was firstly proved in [], and an alternative nice proof can be found in [].

Theorem . [] Let Mn be a θ -slant proper submanifold of a quaternionic space form
Mm(c). Then:

(i) For each unit vector X ∈ TpM, we have

Ric(X) ≤ (n – )c


+
n


‖H‖ + c


cos θ . ()

(ii) If H(p) = , then a unit tangent vector X at p satisfies the equality case of () if and
only if X belongs to the relative null space ofM at p.

(iii) The equality case of () holds identically for all unit tangent vectors at p if and only
either p is a totally geodesic point or n =  and p is a totally umbilical point.

In [], Oprea proved using optimization methods that the inequality () is not op-
timal for Lagrangian submanifolds in complex space forms and obtained an improved
Chen-Ricci inequality. In [], Deng obtained the proof of the improved inequality as an
application of suitable algebraic inequalities. This allows one to determine the equality
condition in an explicit form. Recently, in [], the Chen-Ricci inequality was improved
for Lagrangian submanifolds in quaternionic space forms as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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Theorem . [] Let Mn be a Lagrangian submanifold of real dimension n ≥  in a
quaternionic space form Mn(c), p be a point in M and X be a unit tangent vector in TpM.
Then we have

Ric(X) ≤ (n – )


(
c + ‖H‖). ()

Moreover, the equality sign holds for any unit tangent vector at p if and only if either
(i) p is a totally geodesic point or
(ii) n =  and p is an H-umbilical point with λr = μr , r = , , , i.e., there exists an

orthonormal basis {e, . . . , en} of TpM such that the second fundamental form takes
the following simple form:

h(e, e) =
∑

α=

λαJα(e),

h(e, e) =
∑

α=

μαJα(e),

h(e, ej) =
∑

α=

μαJα(ej),

h(ej, ek) = , j = k, j,k = , . . . ,n

for some suitable functions λr and μr satisfying λr = μr , r = , , .

5 Fundamental inequalities involving k-Ricci curvature, squaredmean
curvature and shape operator

In [], Chen extended the notion of Ricci curvature to k-Ricci curvature for a Rieman-
nian manifold and established a sharp relationship between k-Ricci curvatures and the
shape operator and also a sharp relationship between k-Ricci curvatures and the squared
mean curvature for an n-dimensional Riemannian submanifold in a real space form M
with constant sectional curvature c. More precisely, he proved that for any point p ∈ M
and any integer k,  ≤ k ≤ n, one has

‖H‖(p) ≥ (n – )
n

[
�k(p)
k – 

– c
]
. ()

On the other hand, Chen proved that if �k(p) = c, then the shape operator at the mean
curvature vector satisfies for any integer k,  ≤ k ≤ n, and any point p ∈ M,

AH >
n – 
n

[
�k(p) – c

]
In, ()

at p, where In denotes the identity map of TpMn.
The inequality () was extended in the setting of a totally real submanifold in a quater-

nionic space form by Liu and Dai in [] and recently, in [], both inequalities () and
() were generalized for proper slant submanifolds in quaternionic space forms as fol-
lows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/66
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Theorem . [] Let Mn be a θ -slant proper submanifold of a quaternionic space form
Mm(c). Then, for any p ∈M and any integer k,  ≤ k ≤ n, one has

‖H‖(p) ≥ �k(p) –
c


(
 +


n – 

cos θ

)
. ()

Theorem . [] Let x : M → Mm(c) be an isometric immersion of an n-dimensional
θ -slant proper submanifoldM into a m-dimensional quaternionic space formM(c).Then,
for any p ∈M and any integer k,  ≤ k ≤ n, one has:

(i) If �k(p) = c
 ( +


n– cos

 θ ), then the shape operator at the mean curvature satisfies

AH >
n – 
n

[
�k(p) –

c


(
 +


n – 

cos θ

)]
In, ()

at p, where In denotes the identity map of TpM.
(ii) If �k(p) = c

 ( +


n– cos
 θ ), then AH ≥  at p.

(iii) A unit vector X ∈ TpM satisfies

AHX =
n – 
n

[
�k(p) –

c


(
 +


n – 

cos θ

)]
X ()

if and only if �k(p) = c
 ( +


n– cos

 θ ) and X belongs toNp, the relative null space of
M at p.

(iv) The identity

AH =
n – 
n

[
�k(p) –

c


(
 +


n – 

cos θ

)]
In ()

holds at p if and only if p is a totally geodesic point.

6 Some open problems
In this section we propose to investigate the following open problems related to the Chen
invariants and ideal immersions in quaternionic space forms.

Problem . QR-submanifolds were introduced by Bejancu [] as a generalization of
the real hypersurfaces of a quaternionic Kähler manifold. In fact, a real submanifoldM of
a quaternionic Kählermanifold (M,σ , g) is called aQR-submanifold if there exists a vector
subbundle D of the normal bundle TM⊥ such that Jα(Dp) =Dp and Jα(D⊥

p ) ⊂ TpM, for all
p ∈ M, α = , ,  and for any local basis {J, J, J} of σ , where D⊥ is the complementary
orthogonal bundle to D in TM⊥. The problem is to extend the inequalities (), (), (),
() and () for QR-submanifolds in quaternionic space forms.

Problem . To generalize the Theorems ., ., ., ., . and . for semi-slant sub-
manifolds in quaternionic space forms.
We note that the concept of a semi-slant submanifold in quaternionic geometry was

introduced by Şahin [] as follows: a real submanifold M of a quaternionic Kähler man-
ifold (M,σ , g) is said to be a semi-slant submanifold if there exist two orthogonal vector
subbundles μ and μ⊥ of the normal bundle TM⊥ such that TM⊥ = μ ⊕ μ⊥, μ⊥

p is anti-
invariant with respect to Jα and μp is slant with respect to Jα for all p ∈ M, α = , , 

http://www.journalofinequalitiesandapplications.com/content/2013/1/66


Vîlcu Journal of Inequalities and Applications 2013, 2013:66 Page 11 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/66

and for any local basis {J, J, J} of σ . It is easy to see that this notion is natural because
QR-submanifolds and in particular real hypersurfaces are examples of semi-slant subman-
ifolds of a quaternionic Kähler manifold and therefore fulfill the main purpose for which
semi-slant submanifolds were introduced in Kähler geometry by Papaghiuc []. We also
remark that recently, in [], Shukla and Rao defined another concept of a semi-slant sub-
manifold of a quaternionic Kähler manifold by analogy with the definition of Papaghiuc,
but that class of submanifolds, although generalizes slant submanifolds, does not contain
real hypersurfaces as a subclass.

Problem . Recently, Tripathi [], Mihai and Rădulescu [] obtained an improved
Chen-Ricci inequality for Kählerian slant submanifolds in a complex space form. On the
other hand, the quaternionic version of a Kählerian slant submanifold has been introduced
in [], under the name of a quaternionic slant submanifold, and some properties were
obtained in []. Thus a proper slant submanifold M of a quaternionic Kähler manifold
(M,σ , g) is said to be a quaternionic slant submanifold if it satisfies the condition

(∇XPα)Y = ωα+(X)Pα+Y –ωα+(X)Pα+Y

for all vector fields X, Y onM, where the indices are taken from {, , }modulo  and PαY
denotes the tangential component of JαY . The problem is to extend the improved Chen-
Ricci inequality () to quaternionic slant submanifolds in quaternionic space forms and
to investigate the equality case of the inequality.

Problem . In [], Oprea improved the inequality () for Lagrangian submanifolds in
complex space forms and recently, in [], Chen and Dillen obtained improved general
inequalities which involve the squared mean curvature and the invariants δ(n, . . . ,nk) for
Lagrangian submanifolds in complex space forms, giving also necessary and sufficient con-
dition for a Lagrangian submanifold to attain the equality for arbitrary δ(n, . . . ,nk). The
problem is to obtain improved general inequalities for Lagrangian submanifolds in quater-
nionic space forms and to completely classify Lagrangian submanifolds which realize the
equality case of these inequalities.

Problem . In [] it was proved that there do not exist quaternionic slant immersions
of minimal codimension in quaternionic projective space with unfull first normal bundle.
An interesting problem is to investigate the existence of quaternionic slant immersions of
minimal codimension in a quaternionic projective space Pn(H) satisfying the equality case
of () such that either n + n + · · · + nk = n or n + n + · · · + nk < n and at least one of
ni is . We note that the answer of the corresponding problem in Kählerian geometry is
negative [].

Problem . To completely classify δ()-ideal slant submanifolds and δ(, )-ideal La-
grangian submanifolds in quaternionic space forms.
We note that δ() and δ(, ) are the simplest non-trivial δ-curvature invariants and

some classification results for δ() and δ(, )-ideal Lagrangian submanifolds in complex
space forms were obtained in [–].
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Problem . To obtain Chen-like inequalities for the Casorati curvatures of slant sub-
manifolds in quaternionic space forms and to completely classify Casorati ideal subman-
ifolds.
It is known that the Casorati curvature of a submanifold in a Riemannian manifold is

an extrinsic invariant defined as the normalized square of the length of the second fun-
damental form. Moreover, this notion extends the concept of the principal direction of a
hypersurface of a Riemannian manifold to submanifolds of a Riemannian manifold and it
was preferred byCasorati over the traditional Gauss curvature because corresponds better
with the common intuition of curvature []. Therefore it is of great interest to obtain op-
timal inequalities for the Casorati curvatures of submanifolds in different ambient spaces.
We note that in [], Decu, Haesen and Verstraelen obtained some optimal inequalities
involving the scalar curvature and the Casorati curvature of a Riemannian submanifold
in a real space form and the holomorphic sectional curvature and the Casorati curvature
of a Kähler hypersurface in a complex space form. Moreover, the same authors proved in
[] an inequality in which the scalar curvature is estimated from above by the normalized
Casorati curvatures.
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