86 research outputs found
Impact of resin density and short-chain branching distribution on structural evolution and enhancement of tensile modulus of MDO-PE films
This research explores the potential of PE-based mono-material flexible packaging as a sustainable alternative to traditional designs, emphasizing its efficient mechanical recyclability. Typically, non-PE materials are used in the outer layers of multilayer flexible packaging to ensure adequate stiffness and barrier properties. The stiffness of PE films can be significantly improved through the machine direction orientation (MDO) process. Our study investigates the influence of key polyethylene (PE) resin parameters, specifically, resin density and short-chain branching (SCB) distribution, with indications of molecular weight on lab-scale MDO film stretching and its subsequent effects on mechanical properties. We processed 5 distinct PE resins and blends in a lab-scale setup to produce compression molded base sheets and further MDO-PE films, characterizing them using shear rheology, GPC, DSC, and iCCD analyses. Tensile testing provided insights into the mechanical characteristics, while X-rayscattering (SAXS and WAXS) and AFM studies analysed structural evolution and morphology. Uniaxial stretching notably enhanced the tensile modulus of MDO-PE films along the machine direction, particularly in higher density blends, comparable to conventionally used polymers. Challenges related to extremely high-density base sheets led to localized stretching and breakage. Certain resin compositions exhibited unique molecular architecture, facilitating enhanced tensile modulus and axial stiffness. Our study offers insights into the microstructural changes and surface morphology of MDO-PE films, underscoring the potential use of stiffness-enhanced MDO-PE films as outer layers in PE-based flexible packaging designs
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
Impact of molecular architecture and draw ratio on enhancement of targeted mechanical properties of machine direction oriented polyethylene films produced after blown film extrusion
Conventional multi-material multi-layer flexible packaging offers excellent properties. However, it has recycling challenges, necessitating a shift to mono-material multi-layer flexible packaging for example all-polyethylene (PE) packaging which can be tailored through various synthesis and processing methods for different layers. In this work, we study how the key molecular properties (number-average molecular weight (Mn), weight-average molecular weight (Mw), molecular weight distribution (MWD), comonomer content (short chain branching)) and machine direction orientation (MDO) process draw ratio (MDX) influence the final morphology and mechanical properties of MDO-PE films which are intended as the outer layer of mono-material all-polyethylene multi-layer flexible packaging. Five PE grades and various blends were extruded and blown into films. Selected blown films were machine direction oriented to obtain the final MDO-PE films. Furthermore, one selected PE blown film was processed at different MDO process draw ratios while keeping other process parameters constant. From the molecular properties point of view, the higher molecular weight fractions provide a higher possibility for uniform stretching whereas lower molecular weight fractions provide a higher natural draw ratio and therefore higher modulus and stiffness enhancement. Further, the results show that increasing MDO process draw ratio leads to more fibrillation and increased crystallinity. Consequently, the tensile modulus and stiffness at the higher draw ratios increase as well and are comparable to conventionally used polymers in outer layers of multilayer flexible packaging. Thus, this work demonstrates that MDO-PE films with enhanced modulus can provide sufficient stiffness for the design of outer layer of mono-material multi-layer all-PE packaging which presents higher potential for mechanical recyclability
Assessing mechanical recyclability of blown films and integration of PCR for high modulus uniaxially drawn PE film application
Multi-material multi-layer plastic packaging, widely used in packaging of fast-moving consumer goods (FMCG), presents significant challenges for mechanical recycling due to its complex composition. These packages often consist of multiple layers of various polymers and metals, making traditional recycling methods ineffective. To address this, a shift toward mono-material multi-layer packaging has gained attention, particularly in polyethylene (PE) based mono-material multi-layer flexible packaging. Traditionally, the outer layer of multimaterial flexible packaging is made from non-PE materials like polyethylene terephthalate (PET) and polyamide (PA) for enhanced stiffness and barrier properties. However, orienting polymer films through processes like machine direction orientation (MDO) has the potential to improve both mechanical and barrier properties, facilitating the development of lightweight, mono-material packaging. This study examines the mechanical recyclability of virgin polyethylene (PE) blown films and the incorporation of post-consumer resin (PCR) for subsequent machine direction orientation (MDO) operation, intended for use in the outer layer of mono-material flexible packaging. Two set of experiments were conducted. The first set assessed the recyclability of virgin PE blown films after two reprocessing cycles, revealing that slight molecular degradation affected the crystallinity and tensile modulus of reprocessed films. Despite these changes, the reprocessed films retained approximately 77 % of the tensile modulus of virgin MDO films. The second study integrated mixed polyolefin PCR into virgin PE blends at 5 % and 30 % by weight. The 5 % PCR blend demonstrated a tensile modulus comparable to virgin MDO films, highlighting its potential for high-end packaging applications like mono-material PE based flexible packaging. This research supports the feasibility of using recycled materials in MDO processes for stiffness enhanced outer layer of mono-material PE based flexible packaging
SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens
Cryptochromes are blue light absorbing photoreceptors found in many organisms and involved in numerous developmental processes. At least two highly similar cryptochromes are known to affect branching during gametophytic development in the moss Physcomitrella patens. We uncovered a relationship between these cryptochromes and the expression of particular members of the SBP-box genes, a plant specific transcription factor family. Transcript levels of the respective moss SBP-box genes, all belonging to the LG1-subfamily, were found to be dependent, albeit not exclusively, on blue light. Moreover, disruptant lines generated for two moss representatives of this SBP-box gene subfamily, both showed enhanced caulonema side branch formation, a phenotype opposite to that of the ppcry1a/1b double disruptant line. In this report we show that PpCRY1a and PpCRY1b act negatively on the transcript levels of several related moss SBP-box genes and that at least PpSBP1 and PpSBP4 act as negative regulators of side branch formation
Statistical Epistasis and Functional Brain Imaging Support a Role of Voltage-Gated Potassium Channels in Human Memory
Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed “missing heritability.” The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5) was observed (Pnominal combined = 0.000001). The epistatic interaction was robust, as it was significant in a screening (Pnominal = 0.0000012) and in a replication sample (Pnominal = 0.01). Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (Pnominal = 0.001) supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits
Carriage of the V279F Null Allele within the Gene Encoding Lp-PLA2 Is Protective from Coronary Artery Disease in South Korean Males
The Asia-specific PLA2G7 994G-T transversion leads to V279F substitution within the lipoprotein-associated phospholipase-A2 (Lp-PLA₂) and to absence of enzyme activity in plasma. This variant offers a unique natural experiment to assess the role of Lp-PLA₂ in the pathogenesis of coronary artery disease (CAD) in humans. Given conflicting results from mostly small studies, a large two-stage case-control study was warranted.PLA2G7 V279F genotypes were initially compared in 2890 male cases diagnosed with CAD before age 60 with 3128 male controls without CAD at age 50 and above and subsequently in a second independent male dataset of 877 CAD cases and 1230 controls. In the first dataset, the prevalence of the 279F null allele was 11.5% in cases and 12.8% in controls. After adjustment for age, body mass index, diabetes, smoking, glucose and lipid levels, the OR (95% CI) for CAD for this allele was 0.80 (0.66-0.97, p = 0.02). The results were very similar in the second dataset, despite lower power, with an allele frequency of 11.2% in cases and 12.5% in controls, leading to a combined OR of 0.80 (0.69-0.92), p = 0.002. The magnitude and direction of this genetic effect were fully consistent with large epidemiological studies on plasma Lp-PLA₂ activity and CAD risk.Natural deficiency in Lp-PLA₂ activity due to carriage of PLA2G7 279F allele protects from CAD in Korean men. These results provide evidence for a causal relationship between Lp-PLA₂ and CAD, and support pharmacological inhibition of this enzyme as an innovative way to prevent CAD
Carriage of the V279F Null Allele within the Gene Encoding Lp-PLA2 Is Protective from Coronary Artery Disease in South Korean Males
The Asia-specific PLA2G7 994G-T transversion leads to V279F substitution within the lipoprotein-associated phospholipase-A2 (Lp-PLA₂) and to absence of enzyme activity in plasma. This variant offers a unique natural experiment to assess the role of Lp-PLA₂ in the pathogenesis of coronary artery disease (CAD) in humans. Given conflicting results from mostly small studies, a large two-stage case-control study was warranted.PLA2G7 V279F genotypes were initially compared in 2890 male cases diagnosed with CAD before age 60 with 3128 male controls without CAD at age 50 and above and subsequently in a second independent male dataset of 877 CAD cases and 1230 controls. In the first dataset, the prevalence of the 279F null allele was 11.5% in cases and 12.8% in controls. After adjustment for age, body mass index, diabetes, smoking, glucose and lipid levels, the OR (95% CI) for CAD for this allele was 0.80 (0.66-0.97, p = 0.02). The results were very similar in the second dataset, despite lower power, with an allele frequency of 11.2% in cases and 12.5% in controls, leading to a combined OR of 0.80 (0.69-0.92), p = 0.002. The magnitude and direction of this genetic effect were fully consistent with large epidemiological studies on plasma Lp-PLA₂ activity and CAD risk.Natural deficiency in Lp-PLA₂ activity due to carriage of PLA2G7 279F allele protects from CAD in Korean men. These results provide evidence for a causal relationship between Lp-PLA₂ and CAD, and support pharmacological inhibition of this enzyme as an innovative way to prevent CAD
To formalize or not to formalize: women entrepreneurs’ sensemaking of business registration in the context of Nepal
Despite the depiction of decisions to formalize informal firms as rational and ethical, many entrepreneurs in developing countries continue to operate informally regardless of its perceived illicit status. While existing research on why entrepreneurs choose informality emphasizes the economic costs and benefits of such decisions, this often overlooks the realities of the informal economy and the constraints which marginal populations—particularly women—face. In this paper, we use institutional theory and sensemaking to understand the experiences of women in the informal economy and what formalization means to them. We use a qualitative approach to collect data from 90 women entrepreneurs in three different cities in Nepal. In our findings, we identify three groups of women with distinctive understandings of formalization—business sustainability, livelihood sufficiency and strategic alignment. Their interpretation of formalization reveals the complex, dynamic, and cyclical nature of formalization decisions. Decisions are also guided by the optimization of social and emotional logics, whereby formalization is conceived differently depending on different life stages, experiences within the informal economy and wider socio-cultural contexts. Our findings highlight the ethical implications of formalization where being a ‘good citizen’, rather than complying with formal rules and regulations, is about attuning to and fitting in with socially prescribed roles. Our research provides a nuanced view of formalization decisions, challenging idealized and ethical notions of formalization as a desired end state
Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes
Abstract Background Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. Results We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I σ70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the α subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the σ70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. Conclusion The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.</p
- …
