453 research outputs found

    Sliding charge density wave in manganites

    Full text link
    The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}Ca_{0.50}MnO_3 that this state is in fact a prototypical charge density wave (CDW) which undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. Our discovery that the manganite superstructure is a CDW shows that unusual transport and structural properties do not require exotic physics, but can emerge when a well-understood phase (the CDW) coexists with disorder.Comment: 13 pages; 4 figure

    Drama as a pedagogical tool for practicing death notification-experiences from Swedish medical students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the toughest tasks in any profession is the deliverance of death notification. Marathon Death is an exercise conducted during the fourth year of medical school in northern Sweden to prepare students for this responsibility. The exercise is designed to enable students to gain insight into the emotional and formal procedure of delivering death notifications. The exercise is inspired by Augusto Boal's work around Forum Theatre and is analyzed using video playback. The aim of the study was to explore reflections, attitudes and ideas toward training in delivering death notifications among medical students who participate in the Marathon Death exercise based on forum play.</p> <p>Methods</p> <p>After participation in the Marathon Death exercise, students completed semi-structured interviews. The transcribed interviews were analyzed using the principles of qualitative content analysis including a deductive content analysis approach with a structured matrix based on Bloom's taxonomy domains.</p> <p>Results</p> <p>The Marathon Death exercise was perceived as emotionally loaded, realistic and valuable for the future professional role as a physician. The deliverance of a death notification to the next of kin that a loved one has died was perceived as difficult. The exercise conjured emotions such as positive expectations and sheer anxiety. Students perceived participation in the exercise as an important learning experience, discovering that they had the capacity to manage such a difficult situation. The feedback from the video playback of the exercise and the feedback from fellow students and teachers enhanced the learning experience.</p> <p>Conclusions</p> <p>The exercise, Marathon Death, based on forum play with video playback is a useful pedagogical tool that enables students to practice delivering death notification. The ability to practice under realistic conditions contributes to reinforce students in preparation for their future professional role.</p

    Impact of the California Lead Ammunition Ban on Reducing Lead Exposure in Golden Eagles and Turkey Vultures

    Get PDF
    Predatory and scavenging birds may be exposed to high levels of lead when they ingest shot or bullet fragments embedded in the tissues of animals injured or killed with lead ammunition. Lead poisoning was a contributing factor in the decline of the endangered California condor population in the 1980s, and remains one of the primary factors threatening species recovery. In response to this threat, a ban on the use of lead ammunition for most hunting activities in the range of the condor in California was implemented in 2008. Monitoring of lead exposure in predatory and scavenging birds is essential for assessing the effectiveness of the lead ammunition ban in reducing lead exposure in these species. In this study, we assessed the effectiveness of the regulation in decreasing blood lead concentration in two avian sentinels, golden eagles and turkey vultures, within the condor range in California. We compared blood lead concentration in golden eagles and turkey vultures prior to the lead ammunition ban and one year following implementation of the ban. Lead exposure in both golden eagles and turkey vultures declined significantly post-ban. Our findings provide evidence that hunter compliance with lead ammunition regulations was sufficient to reduce lead exposure in predatory and scavenging birds at our study sites

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Structure and Age Jointly Influence Rates of Protein Evolution

    Get PDF
    What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group – including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution

    Improved Measurement of the Pseudoscalar Decay Constant fDsf_{D_{s}}

    Get PDF
    We present a new determination of the Ds decay constant, f_{Ds} using 5 million continuum charm events obtained with the CLEO II detector. Our value is derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of 0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6 +/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    First Observation of τ3πηντ\tau\to 3\pi\eta\nu_{\tau} and τf1πντ\tau\to f_{1}\pi\nu_{\tau} Decays

    Full text link
    We have observed new channels for τ\tau decays with an η\eta in the final state. We study 3-prong tau decays, using the ηγγ\eta\to\gamma\gamma and \eta\to 3\piz decay modes and 1-prong decays with two \piz's using the ηγγ\eta\to\gamma\gamma channel. The measured branching fractions are \B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau}) =(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to \pi^{-}2\piz\eta\nu_{\tau} =(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for f1ηππf_1\to\eta\pi\pi substructure and measure \B(\tau^{-}\to f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also searched for η(958)\eta'(958) production and obtain 90% CL upper limits \B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to \pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter

    Integrated Assessment of Genomic Correlates of Protein Evolutionary Rate

    Get PDF
    Rates of evolution differ widely among proteins, but the causes and consequences of such differences remain under debate. With the advent of high-throughput functional genomics, it is now possible to rigorously assess the genomic correlates of protein evolutionary rate. However, dissecting the correlations among evolutionary rate and these genomic features remains a major challenge. Here, we use an integrated probabilistic modeling approach to study genomic correlates of protein evolutionary rate in Saccharomyces cerevisiae. We measure and rank degrees of association between (i) an approximate measure of protein evolutionary rate with high genome coverage, and (ii) a diverse list of protein properties (sequence, structural, functional, network, and phenotypic). We observe, among many statistically significant correlations, that slowly evolving proteins tend to be regulated by more transcription factors, deficient in predicted structural disorder, involved in characteristic biological functions (such as translation), biased in amino acid composition, and are generally more abundant, more essential, and enriched for interaction partners. Many of these results are in agreement with recent studies. In addition, we assess information contribution of different subsets of these protein properties in the task of predicting slowly evolving proteins. We employ a logistic regression model on binned data that is able to account for intercorrelation, non-linearity, and heterogeneity within features. Our model considers features both individually and in natural ensembles (“meta-features”) in order to assess joint information contribution and degree of contribution independence. Meta-features based on protein abundance and amino acid composition make strong, partially independent contributions to the task of predicting slowly evolving proteins; other meta-features make additional minor contributions. The combination of all meta-features yields predictions comparable to those based on paired species comparisons, and approaching the predictive limit of optimal lineage-insensitive features. Our integrated assessment framework can be readily extended to other correlational analyses at the genome scale
    corecore