12 research outputs found

    Is Emotion Recognition Impaired in Individuals with Autism Spectrum Disorders?

    Get PDF
    Researchers have argued that individuals with autism spectrum disorders (ASDs) use an effortful “systematizing” process to recognize emotion expressions, whereas typically developing (TD) individuals use a more holistic process. If this is the case, individuals with ASDs should show slower and less efficient emotion recognition, particularly for socially complex emotions. We tested this account by assessing the speed and accuracy of emotion recognition while limiting exposure time and response window. Children and adolescents with ASDs showed quick and accurate recognition for most emotions, including pride, a socially complex emotion, and no differences emerged between ASD and TD groups. Furthermore, both groups trended toward higher accuracy when responding quickly, even though systematizing should promote a speed-accuracy trade-off for individuals with ASDs

    Emotion perception improvement following high frequency transcranial random noise stimulation of the inferior frontal cortex.

    Get PDF
    Facial emotion perception plays a key role in interpersonal communication and is a precursor for a variety of socio-cognitive abilities. One brain region thought to support emotion perception is the inferior frontal cortex (IFC). The current study aimed to examine whether modulating neural activity in the IFC using high frequency transcranial random noise stimulation (tRNS) could enhance emotion perception abilities. In Experiment 1, participants received either tRNS to IFC or sham stimulation prior to completing facial emotion and identity perception tasks. Those receiving tRNS significantly outperformed those receiving sham stimulation on facial emotion, but not identity, perception tasks. In Experiment 2, we examined whether baseline performance interacted with the effects of stimulation. Participants completed a facial emotion and identity discrimination task prior to and following tRNS to either IFC or an active control region (area V5/MT). Baseline performance was a significant predictor of emotion discrimination performance change following tRNS to IFC. This effect was not observed for tRNS targeted at V5/MT or for identity discrimination. Overall, the findings implicate the IFC in emotion processing and demonstrate that tRNS may be a useful tool to modulate emotion perception when accounting for individual differences in factors such as baseline task performance

    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium

    Get PDF
    BACKGROUND Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation. CONCLUSION This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts

    Gender effects in information processing on a nonverbal decoding task

    No full text
    Women typically outperform men on the ability to assess other people’s nonverbal behavior. This difference might occur because women are taught to be more sensitive to emotional and nonverbal cues at a very early age compared to men. As a consequence, women might use a more favorable cognitive processing style than men during nonverbal decoding. The present study investigated whether this gender difference is due to the use of different cognitive information processing styles (global or local). Participants (N = 137) were Swiss undergraduate students that were randomly assigned to either a global (focusing on the whole) or a local (focusing on details) priming of information processing style, or to a control group. They then performed a nonverbal decoding task. Results showed that compared to the control group, local priming had beneficial and global priming detrimental effects for nonverbal decoding accuracy. This was due to an improved performance in men after the local priming; women’s performance was not significantly affected by the local priming. Global priming increased nonverbal decoding accuracy in men and decreased performance in women. We conclude that women already use the more beneficial local processing style by default and that men’s performance can be boosted when providing them a processing strategy
    corecore