12 research outputs found

    Imaging of bronchial pathology in antibody deficiency: Data from the European Chest CT Group

    Get PDF
    Studies of chest computed tomography (CT) in patients with primary antibody deficiency syndromes (ADS) suggest a broad range of bronchial pathology. However, there are as yet no multicentre studies to assess the variety of bronchial pathology in this patient group. One of the underlying reasons is the lack of a consensus methodology, a prerequisite to jointly document chest CT findings. We aimed to establish an international platform for the evaluation of bronchial pathology as assessed by chest CT and to describe the range of bronchial pathologies in patients with antibody deficiency. Ffteen immunodeficiency centres from 9 countries evaluated chest CT scans of patients with ADS using a predefined list of potential findings including an extent score for bronchiectasis. Data of 282 patients with ADS were collected. Patients with common variable immunodeficiency disorders (CVID) comprised the largest subgroup (232 patients, 82.3%). Eighty percent of CVID patients had radiological evidence of bronchial pathology including bronchiectasis in 61%, bronchial wall thickening in 44% and mucus plugging in 29%. Bronchiectasis was detected in 44% of CVID patients aged less than 20 years. Cough was a better predictor for bronchiectasis than spirometry values. Delay of diagnosis as well as duration of disease correlated positively with presence of bronchiectasis. The use of consensus diagnostic criteria and a pre-defined list of bronchial pathologies allows for comparison of chest CT data in multicentre studies. Our data suggest a high prevalence of bronchial pathology in CVID due to late diagnosis or duration of disease

    Physiological plasticity related to zonation affects <i>hsp70</i> expression in the reef-building coral <i>Pocillopora verrucosa</i>

    No full text
    <div><p>This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (<i>hsp70</i>) in the scleractinian coral <i>Pocillopora verrucosa</i> sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the <i>P</i>. <i>verrucosa hsp70</i> transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in <i>P</i>. <i>verrucosa</i>. Corals exhibiting higher basal <i>hsp70</i> levels may display enhanced tolerance towards environmental stressors.</p></div

    The protection of marble surfaces: the challenge to develop suitable nanostructured treatments

    No full text
    Marbles have been extensively used in historical architecture owing to their good mineralogical and microstructural properties, durability, and aesthetic quality. Nevertheless, the protection of historical marbles in outdoor conditions is a difficult task, mainly because of their low open porosity. An overview of nanostructured protective treatments based on the use of SiO2, TiO2, ZnO, and Ag nanoparticles to confer superhydrophobic, self-cleaning, and antifouling properties to the surface is proposed. Particular attention is devoted to the development of photocatalytic nano-TiO2-based treatments. In this regard, advantages, drawbacks, and critical issues in the use of nanocomposites are covered. Recent advances using modified innovative TiO2 nanoparticles, in dispersion and as nanocomposites, are reported. Nanocomposites based on suitable TiO2 nanoparticles seem very promising, and a comparison of the results obtained in controlled lab conditions and on real deteriorated surfaces is also presented
    corecore