537 research outputs found

    Visualizing Convolutional Networks for MRI-based Diagnosis of Alzheimer's Disease

    Full text link
    Visualizing and interpreting convolutional neural networks (CNNs) is an important task to increase trust in automatic medical decision making systems. In this study, we train a 3D CNN to detect Alzheimer's disease based on structural MRI scans of the brain. Then, we apply four different gradient-based and occlusion-based visualization methods that explain the network's classification decisions by highlighting relevant areas in the input image. We compare the methods qualitatively and quantitatively. We find that all four methods focus on brain regions known to be involved in Alzheimer's disease, such as inferior and middle temporal gyrus. While the occlusion-based methods focus more on specific regions, the gradient-based methods pick up distributed relevance patterns. Additionally, we find that the distribution of relevance varies across patients, with some having a stronger focus on the temporal lobe, whereas for others more cortical areas are relevant. In summary, we show that applying different visualization methods is important to understand the decisions of a CNN, a step that is crucial to increase clinical impact and trust in computer-based decision support systems.Comment: MLCN 201

    Probabilistic disease progression modeling to characterize diagnostic uncertainty: Application to staging and prediction in Alzheimer's disease

    Get PDF
    Disease progression modeling (DPM) of Alzheimer's disease (AD) aims at revealing long term pathological trajectories from short term clinical data. Along with the ability of providing a data-driven description of the natural evolution of the pathology, DPM has the potential of representing a valuable clinical instrument for automatic diagnosis, by explicitly describing the biomarker transition from normal to pathological stages along the disease time axis. In this work we reformulated DPM within a probabilistic setting to quantify the diagnostic uncertainty of individual disease severity in an hypothetical clinical scenario, with respect to missing measurements, biomarkers, and follow-up information. We show that the staging provided by the model on 582 amyloid positive testing individuals has high face validity with respect to the clinical diagnosis. Using follow-up measurements largely reduces the prediction uncertainties, while the transition from normal to pathological stages is mostly associated with the increase of brain hypo-metabolism, temporal atrophy, and worsening of clinical scores. The proposed formulation of DPM provides a statistical reference for the accurate probabilistic assessment of the pathological stage of de-novo individuals, and represents a valuable instrument for quantifying the variability and the diagnostic value of biomarkers across disease stages

    Harmonization of brain PET images in multi-center PET studies using Hoffman phantom scan

    Get PDF
    Background: Image harmonization has been proposed to minimize heterogeneity in brain PET scans acquired in multi-center studies. However, standard validated methods and software tools are lacking. Here, we assessed the performance of a framework for the harmonization of brain PET scans in a multi-center European clinical trial. / Method: Hoffman 3D brain phantoms were acquired in 28 PET systems and reconstructed using site-specific settings. Full Width at Half Maximum (FWHM) of the Effective Image Resolution (EIR) and harmonization kernels were estimated for each scan. The target EIR was selected as the coarsest EIR in the imaging network. Using “Hoffman 3D brain Analysis tool,” indicators of image quality were calculated before and after the harmonization: The Coefficient of Variance (COV%), Gray Matter Recovery Coefficient (GMRC), Contrast, Cold-Spot RC, and left-to-right GMRC ratio. A COV% ≤ 15% and Contrast ≥ 2.2 were set as acceptance criteria. The procedure was repeated to achieve a 6-mm target EIR in a subset of scans. The method’s robustness against typical dose-calibrator-based errors was assessed. / Results: The EIR across systems ranged from 3.3 to 8.1 mm, and an EIR of 8 mm was selected as the target resolution. After harmonization, all scans met acceptable image quality criteria, while only 13 (39.4%) did before. The harmonization procedure resulted in lower inter-system variability indicators: Mean ± SD COV% (from 16.97 ± 6.03 to 7.86 ± 1.47%), GMRC Inter-Quartile Range (0.040–0.012), and Contrast SD (0.14–0.05). Similar results were obtained with a 6-mm FWHM target EIR. Errors of ± 10% in the DRO activity resulted in differences below 1 mm in the estimated EIR. / Conclusion: Harmonizing the EIR of brain PET scans significantly reduced image quality variability while minimally affecting quantitative accuracy. This method can be used prospectively for harmonizing scans to target sharper resolutions and is robust against dose-calibrator errors. Comparable image quality is attainable in brain PET multi-center studies while maintaining quantitative accuracy

    Detailed volumetric analysis of the hypothalamus in behavioral variant frontotemporal dementia

    Get PDF
    Abnormal eating behaviors are frequently reported in behavioral variant frontotemporal dementia (bvFTD). The hypothalamus is the regulatory center for feeding and satiety but its involvement in bvFTD has not been fully clarified, partly due to its difficult identification on MR images. We measured hypothalamic volume in 18 patients with bvFTD (including 9 MAPT and 6 C9orf72 mutation carriers) and 18 cognitively normal controls using a novel optimized multimodal segmentation protocol, combining 3D T1 and T2-weighted 3T MRIs (intrarater intraclass correlation coefficients ≥0.93). The whole hypothalamus was subsequently segmented into five subunits: the anterior (superior and inferior), tuberal (superior and inferior), and posterior regions. The presence of abnormal eating behavior was assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R). The bvFTD group showed a 17 % lower hypothalamic volume compared with controls (p < 0.001): mean 783 (standard deviation 113) versus 944 (73) mm(3) (corrected for total intracranial volume). In the hypothalamic subunit analysis, the superior parts of the anterior and tuberal regions and the posterior region were significantly smaller in the bvFTD group compared with controls. There was a trend for a smaller hypothalamic volume, particularly in the superior tuberal region, in those with severe eating disturbance scores on the CBI-R. Differences were seen between the two genetic subgroups with significantly smaller volumes in the MAPT but not the C9orf72 group compared with controls. In summary, bvFTD patients had lower hypothalamic volumes compared with controls. Different genetic mutations may have a differential impact on the hypothalamus

    Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder which spans several years from preclinical manifestations to dementia. In recent years, interest in the application of machine learning (ML) algorithms to personalized medicine has grown considerably, and a major challenge that such models face is the transferability from the research settings to clinical practice. The objective of this work was to demonstrate the transferability of the Subtype and Stage Inference (SuStaIn) model from well-characterized research data set, employed as training set, to independent less-structured and heterogeneous test sets representative of the clinical setting. The training set was composed of MRI data of 1043 subjects from the Alzheimer's disease Neuroimaging Initiative (ADNI), and the test set was composed of data from 767 subjects from OASIS, Pharma-Cog, and ViTA clinical datasets. Both sets included subjects covering the entire spectrum of AD, and for both sets volumes of relevant brain regions were derived from T1-3D MRI scans processed with Freesurfer v5.3 cross-sectional stream. In order to assess the predictive value of the model, subpopulations of subjects with stable mild cognitive impairment (MCI) and MCIs that progressed to AD dementia (pMCI) were identified in both sets. SuStaIn identified three disease subtypes, of which the most prevalent corresponded to the typical atrophy pattern of AD. The other SuStaIn subtypes exhibited similarities with the previously defined hippocampal sparing and limbic predominant atrophy patterns of AD. Subject subtyping proved to be consistent in time for all cohorts and the staging provided by the model was correlated with cognitive performance. Classification of subjects on the basis of a combination of SuStaIn subtype and stage, mini mental state examination and amyloid-β1-42 cerebrospinal fluid concentration was proven to predict conversion from MCI to AD dementia on par with other novel statistical algorithms, with ROC curves that were not statistically different for the training and test sets and with area under curve respectively equal to 0.77 and 0.76. This study proves the transferability of a SuStaIn model for AD from research data to less-structured clinical cohorts, and indicates transferability to the clinical setting

    MRI analysis for Hippocampus segmentation on a distributed infrastructure

    Get PDF
    Medical image computing raises new challenges due to the scale and the complexity of the required analyses. Medical image databases are currently available to supply clinical diagnosis. For instance, it is possible to provide diagnostic information based on an imaging biomarker comparing a single case to the reference group (controls or patients with disease). At the same time many sophisticated and computationally intensive algorithms have been implemented to extract useful information from medical images. Many applications would take great advantage by using scientific workflow technology due to its design, rapid implementation and reuse. However this technology requires a distributed computing infrastructure (such as Grid or Cloud) to be executed efficiently. One of the most used workflow manager for medical image processing is the LONI pipeline (LP), a graphical workbench developed by the Laboratory of Neuro Imaging (http://pipeline.loni.usc.edu). In this article we present a general approach to submit and monitor workflows on distributed infrastructures using LONI Pipeline, including European Grid Infrastructure (EGI) and Torque-based batch farm. In this paper we implemented a complete segmentation pipeline in brain magnetic resonance imaging (MRI). It requires time-consuming and data-intensive processing and for which reducing the computing time is crucial to meet clinical practice constraints. The developed approach is based on web services and can be used for any medical imaging application

    Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI harmonized hippocampal protocol

    Get PDF
    AbstractThe hippocampus has a key role in a number of neurodegenerative diseases, such as Alzheimer's Disease. Here we present a novel method for the automated segmentation of the hippocampus from structural magnetic resonance images (MRI), based on a combination of multiple classifiers. The method is validated on a cohort of 50 T1 MRI scans, comprehending healthy control, mild cognitive impairment, and Alzheimer's Disease subjects. The preliminary release of the EADC-ADNI Harmonized Protocol training labels is used as gold standard. The fully automated pipeline consists of a registration using an affine transformation, the extraction of a local bounding box, and the classification of each voxel in two classes (background and hippocampus). The classification is performed slice-by-slice along each of the three orthogonal directions of the 3D-MRI using a Random Forest (RF) classifier, followed by a fusion of the three full segmentations. Dice coefficients obtained by multiple RF (0.87 ± 0.03) are larger than those obtained by a single monolithic RF applied to the entire bounding box, and are comparable to state-of-the-art. A test on an external cohort of 50 T1 MRI scans shows that the presented method is robust and reliable. Additionally, a comparison of local changes in the morphology of the hippocampi between the three subject groups is performed. Our work showed that a multiple classification approach can be implemented for the segmentation for the measurement of volume and shape changes of the hippocampus with diagnostic purposes

    Enkephalon - technological platform to support the diagnosis of alzheimer’s disease through the analysis of resonance images using data mining techniques

    Get PDF
    Dementia can be considered as a decrease in the cognitive function of the person. The main diseases that appear are Alzheimer and vascular dementia. Today, 47 million people live with dementia around the world. The estimated total cost of dementia worldwide is US $ 818 billion, and it will become a trilliondollar disease by 2019 The vast majority of people with dementia not received a diagnosis, so they are unable to access care and treatment. In Colombia, two out of every five people presented a mental disorder at some point in their lives and 90% of these have not accessed a health service. Here it´s proposed a technological platform so early detection of Alzheimer. This tool complements and validates the diagnosis made by the health professional, based on the application of Machine Learning techniques for the analysis of a dataset, constructed from magnetic resonance imaging, neuropsychological test and the result of a radiological test. A comparative analysis of quality metrics was made, evaluating the performance of different classifier methods: Random subspace, Decorate, BFTree, LMT, Ordinal class classifier, ADTree and Random forest. This allowed us to identify the technique with the highest prediction rate, that was implemented in ENKEPHALON platform
    • …
    corecore