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A B S T R A C T

The hippocampus has a key role in a number of neurodegenerative diseases, such as Alzheimer’s Disease.
Here we present a novel method for the automated segmentation of the hippocampus from structural
magnetic resonance images (MRI), based on a combination of multiple classifiers. The method is vali-
dated on a cohort of 50 T1 MRI scans, comprehending healthy control, mild cognitive impairment, and
Alzheimer’s Disease subjects. The preliminary release of the EADC-ADNI Harmonized Protocol training
labels is used as gold standard. The fully automated pipeline consists of a registration using an affine
transformation, the extraction of a local bounding box, and the classification of each voxel in two classes
(background and hippocampus). The classification is performed slice-by-slice along each of the three or-
thogonal directions of the 3D-MRI using a Random Forest (RF) classifier, followed by a fusion of the three
full segmentations. Dice coefficients obtained by multiple RF (0.87 ± 0.03) are larger than those ob-
tained by a single monolithic RF applied to the entire bounding box, and are comparable to state-of-
the-art. A test on an external cohort of 50 T1 MRI scans shows that the presented method is robust and
reliable. Additionally, a comparison of local changes in the morphology of the hippocampi between the
three subject groups is performed. Our work showed that a multiple classification approach can be imple-
mented for the segmentation for the measurement of volume and shape changes of the hippocampus
with diagnostic purposes.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In the last 20 years, the hippocampus has acquired a key role
as a biomarker for many neuropsychiatric diseases such as Alzheim-

er’s disease (AD) [1], and major depression. Specifically, in the case
of AD, hippocampal shape and volume changes represent as an early
indicator of tissue degeneration. Intercepting these changes is of
crucial importance, since the timely introduction of disease-
modifying treatments may bring to a reduction of progression rate
of the illness with improvement of patients’ quality of life. To date,
manual segmentation performed by trained experts is still consid-
ered the reference standard for the hippocampus identification but,
although several protocols have been proposed [2], none has emerged
as a standard thus far, making it difficult to compare experimental
results from different investigators. Trying to fill this gap, EADC-
ADNI has developed a new protocol based on the most influential
protocols adopted last years. The Harmonized Hippocampus Pro-
tocol (HarP) [3] aims to delineate a set of rules for the manual
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segmentation of the hippocampus that could be shared among the
different research teams. However, manual segmentation can be ex-
tremely time consuming, and is therefore impractical for large-
scale studies. In light of this, in the last decade, a great effort has
been devoted to the development of automatic segmentation tech-
niques showing good predictive performance and reasonable
computational times. Among automatic segmentation methods,
notable results have been achieved by pattern recognition models,
deformable shapes, and multi-atlas label fusion.

In machine-learning domain, frequently real problems involve
building large complex models. In these cases, one of the sug-
gested approaches is defining a set of simple models that can easily
catch the local properties of data. Multiple classification, which is
based on this idea, has been widely used for automatic learning and
pattern recognition tasks, showing an improvement of detection per-
formance over single monolithic classifiers. As an example, we may
cite widely adopted methods, like “ensembles” (e.g. Random Forest,
AdaBoost), are based on simple base learners that perform the same
task on different subsets of samples or features. A general idea is
that the base learner should provide good performance and a suf-
ficient level of diversity [4], so that coincident errors can be reduced.

In our work, a modular approach was adopted defining three sets
of complementary base learners, each of them specialized in seg-
menting each slice of the 3D MRI scan along its three principal
directions. Thereafter, the three full 3D segmentations were com-
bined using a majority voting approach in order to avoid complexities
that could reduce the generality of the method [5].

Several examples of applications of multiple classifiers to medical
imaging have already been reported in the literature. An approach
based on fusion of best performing classifiers to detect breast lesions
from Dynamic Contrast-Enhanced MRI (DCE-MRI) scans was pro-
posed in [6]. Other methods are based on fusion of different/
complementary feature set classifiers [7,8]. However, the literature
lacks examples of multiple classifiers applied to the brain
parcelization. The method presented here is similar to [9], where
a set of Adaboost classifiers fused with a majority voting rule is
applied to human organ localization in 3D Computed Tomogra-
phy (CT) images. The distinctive feature of our work lies in the
extraction of the shape of the sub-cortical region of interest, per-
forming a segmentation of the hippocampal region.

Materials and methods

All 3D MRI scans were obtained from the ADNI database (https://
ida.loni.usc.edu), together with the manual segmentations from the
preliminary release [10] of EADC-ADNI Harmonized Protocol (HarP)
training labels, available at http://www.hippocampal-protocol.net/
SOPs/labels.php. HarP has been developed by the major interna-
tional experts of hippocampal tracing in AD, with the aim of
harmonizing the available protocols for manual tracing of the hip-
pocampus in order to create a standard shared protocol.

Two subject cohorts were used in our experiments. To tune the
classifiers’ parameters and evaluate their performance, we used the
first cohort (D1), consisting of 50 3D MRI scans (14 normal control
(NC), 17 mild cognitive impairment (MCI), and 19 Alzheimer’s
Disease (AD) subjects) with age in the range of 60–89 years. A second
independent cohort (D2) consisting of 50 3D MRI scans (15 NC, 17
MCI, 18 AD) with age in the range of 61–90 was only used to test
the classifiers’ performance. D2 images were not used during the
training phase.

MRI scans alignment and ROI extraction

The MRI scans were aligned through an affine (12 degrees of
freedom) transformation, using the Insight Segmentation and Reg-
istration Toolkit (http://www.itk.org/). A shape based pre-

segmentation of the hippocampus was then performed (FAPoD) [11]
to identify a smaller region of interest encased by a bounding box
(50 × 60 × 60 voxels). The latter procedure aimed to decrease the data
dimensionality and consequently the computational time.

Feature extraction

After MRI scans alignment, a set of about 300 features associ-
ated to each voxel was computed [12,13]. These consisted of:
intensity, gradients, co-occurrence based Haralick features com-
puted along the directions 0°, 45°, 90°, 135°, 1D, 2D, and 3D Haar-
like features, mean filters, and variance filters. All the features were
computed using a neighborhood kernel centered in the voxel and
with size varying from 3 × 3 × 3 to 9 × 9 × 9 voxels.

Automated hippocampal segmentation

In this section we give a description of the proposed multiple
classifier method for the automatic segmentation of the hippocam-
pus. RF [14] was selected as base learner for its robustness to noise
and overfitting. Furthermore, manual feature selection was avoided
since RF was able to perform it intrinsically. The 3D ROI was first
split into 1-voxel thick slices along the three orthogonal direc-
tions x, y, and z corresponding to the axial, coronal, and sagittal
directions, respectively. In this way, each group of orthogonal slices
was processed independently.

From the training images, we defined the training voxels for the
RF classifier as a mask-filtered subset of each slice. Specifically, we
took the area of the slice containing the hippocampus and dilated
it by a δ × δ voxel sized square kernel, inclusive of background voxels
in the neighborhood of the hippocampus boundaries. In addition, each
RF classifier required tuning of two parameters: number t of trees
and minimum number l of observation per leaf. Successively, the clas-
sifiers were applied to the test image slices along the corresponding
direction k, on which a different filtering mask was applied. This was
defined as the union of hippocampal regions in the training slices.
Since MRI scans were aligned during the registration, we could assume
that this region included the hippocampal region of test images.

The final segmentation of the hippocampus was obtained ap-
plying a majority voting rule to the union of the three binary
segmentations (one for each direction). A graphical scheme of the
algorithm as it worked along the direction x is shown in Fig. 1.

Evaluation metrics

The accuracy of the hippocampus automatic segmentation was
evaluated by measuring a set of standard metrics. Error, precision,
recall, and Dice’s similarity coefficient (DSC) are defined as follows:

Error
FP FN

TP TN FP FN
= +

+ + +
(1)

Precision
TP

TP FP
=

+
(2)

Recall
TP

TP FN
=

+
(3)

DSC
TP

TP FP FN
=

+ +
2

2
. (4)

where true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) are the confusion matrix elements.

Each of these metrics is sensitive to one or more components
of the confusion matrix, hence classifier performance should be
evaluated jointly with the metrics outcomes. In particular, error rate
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may be underestimated when the test set is very imbalanced. DSC
represents a measure of the agreement between automated and
manual segmentation. Precision and recall are more sensitive to FP
and FN, respectively, and provide a measure of the most fre-
quently mislabeled class.

Local atrophy mapping

The local shape differences between the hippocampi of the three
groups were analyzed through the SPHARM-MAT toolbox for Matlab1.
This method allows, through an implicit description of 3D objects,
a study of morphological correspondences. First, binary hippocam-

pal segmentation was converted to a parameterized surface mesh
with a ‘Topology fix’ (connectivity = (6 +, 18), epsilon = 1.5).
Thereafter, hippocampal shapes were aligned establishing a corre-
spondence among all the surfaces using a first-order ellipsoid (FOE)
algorithm. To assess local differences among the surfaces of the three
subject groups, a vertex-by-vertex t-test was performed on the
surface manifold and the significance maps of T-values were
computed.

Results

Performance evaluation

The model validation was performed with a 10-fold cross val-
idation, using the metrics described in Evaluation metrics. Overall1 http://imaging.indyrad.iupui.edu/projects/SPHARM/

Figure 1. A diagram of the segmentation procedure for the MRI slices taken along the x direction. The MRI scans dataset (a) is split into two sets of images corresponding
to the training and test set, respectively. All the planes along the x axis are separated (b)(f) and each plane number is classified separately. A filtering mask obtained dilating
the hippocampal mask (c) is applied to all the training slices (d) which then are used to build an RF classifier (e). The dilated union of all the training hippocampal masks
(g) is used to filter the test slices (h). The procedure is repeated for the other two directions and thereafter the three 3D segmentations are fused with a majority vote procedure.
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performance was assessed by averaging those metrics. Further-
more, a number of trees t of 150 and a minimum number of samples
per leaf l of 5 gave the minimum out-of-bag error.

Training set properties

Mean hippocampal percentage in the ROI was (3.1 ± 0.1)%, there-
fore we expected classifiers to be biased toward the majority class,
resulting in a poor detection capability. As a measure of the clas-
sifier’s capability to correctly distinguish between classes, we used
accuracy on positive examples (equivalent to recall) and accuracy on
negative examples, also called specificity. In particular, we mea-
sured the G-mean score, defined as the geometric mean of the recall
(see Eq. 3) and specificity, which results to being poor when a clas-
sifier is biased toward one class,

Specificity
TN

FP TN
=

+
(5)

G-mean Recall Specificity= × (6)

Effects of imbalance on classifier performance

The effect of class imbalance on classifier performance was evalu-
ated by changing the parameter δ of the filtering mask on the training
slices from 1 to 7. In this way, training sets with different class ratios
were considered. The filtering mask for the test set was dilated of
2 voxels to take into account the morphological variability among
the hippocampi in the dataset.

The error rate and the DSC for different values of the training
filter dilation parameter (Fig. 2) showed that the use of a small
number of background voxels (δ = 4) in the neighborhood region
of the hippocampus can improve the segmentation accuracy.

We also compared the performance of the multiple RF with that
of a single RF. In this case, the filtering mask was defined as the hip-
pocampal region dilated by the same δ used in the classification slice-
by-slice. The results in Table 1, where only metrics with δ = 4 are
reported, show that the performance of multiple RFs was better than
a single monolithic classifier. It is also evident (Table 1) that the pro-
posed method performed better than the classifiers built slice-by-
slice along a single direction, confirming that the fusion of the three
classifiers made it capable of correcting misclassified voxels to each

other. The results achieved with our method are in line with the
state-of-the-art, showing a DSC of (0.87 ± 0.03) for the left hemi-
sphere and (0.87 ± 0.04) for the right hemisphere. Moreover, by this
method we were able to improve the performance obtained in our
previous work [15–17], where we used a single RF classifier with
an analogous filtering approach. However, in those studies, a dif-
ferent cohort was used and, in particular, all the scans were manually
segmented with different protocol. Therefore, this comparison can
be considered indicative of an improvement due to the combina-
tion of the proposed method and the HarP protocol.

As shown by the effects of the variation of the value of the di-
lation parameter on the G-mean (Table 2), classifiers were more prone
to either negative or positive class depending on the class balance
in the training set. It is worth noting that the most balanced clas-
sifier was obtained with δ = 3, followed by δ = 4, which corresponded
to the best DSC. Also, it should be noticed that as the value of δ in-
creases, despite the error and DSC curves showing a decrease in the
performance, they do not vary much, confirming the redundancy
of the information contained into the most external voxels. Apply-
ing FreeSurfer to the dataset we obtained a DSC of 0.74 ± 0.05 for
the left hemisphere and 0.76 ± 0.05 for the right hemisphere, con-
firming that the presented method was able to outperform it.

Volumetric measure

An additional aim of our study was the detection of significant
differences of hippocampal volumes between NCs, MCIs, and ADs.
The hippocampal volume was obtained by counting the number of
voxels classified as hippocampus. Significant differences (p < 0.05)
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Figure 2. Error (upper panel) and DSC (lower panel) trends varying the values of δ
for the left and right hemispheres. The best performance is achieved with a value
of δ = 4.

Table 1
Average metrics and standard deviations for left and right hemispheres of D1 (top)
(δ = 4) for the multiple classifier (RFmulti), the single classifier (RFsingle), and the clas-
sifier built slice-by-slice along a single direction. Average metrics and standard
deviations for D2 (bottom).

Dataset D1

Left hemisphere
Method Error DSC Precision Recall
RFmulti 0.008 ± 0.002 0.87 ± 0.03 0.90 ± 0.04 0.85 ± 0.05
RFsingle 0.008 ± 0.002 0.86 ± 0.03 0.87 ± 0.05 0.86 ± 0.04
RFx 0.009 ± 0.002 0.86 ± 0.03 0.87 ± 0.04 0.85 ± 0.04
RFy 0.008 ± 0.002 0.86 ± 0.03 0.88 ± 0.04 0.85 ± 0.05
RFz 0.008 ± 0.002 0.86 ± 0.03 0.89 ± 0.04 0.84 ± 0.05
Right hemisphere
Method Error DSC Precision Recall
RFmulti 0.008 ± 0.002 0.87 ± 0.04 0.90 ± 0.05 0.84 ± 0.06
RFsingle 0.009 ± 0.002 0.85 ± 0.04 0.86 ± 0.06 0.85 ± 0.06
RFx 0.009 ± 0.002 0.85 ± 0.04 0.87 ± 0.06 0.84 ± 0.06
RFy 0.009 ± 0.002 0.85 ± 0.04 0.88 ± 0.05 0.84 ± 0.07
RFz 0.008 ± 0.002 0.86 ± 0.04 0.90 ± 0.05 0.83 ± 0.07

Dataset D2

Hemisphere Error DSC Precision Recall
Left 0.008 ± 0.003 0.86 ± 0.04 0.89 ± 0.04 0.85 ± 0.06
Right 0.009 ± 0.004 0.86 ± 0.09 0.88 ± 0.07 0.84 ± 0.11

Table 2
Average accuracies on positive (a+) and negative (a–) examples, and G-mean score,
and standard deviations for different values of δ. Only left hemisphere is reported
here.

δ G-mean a+ a–

1 0 89 0 03. .± 0.92 ± 0.03 0.85 ± 0.05
2 0 91 0 02. .± 0 89 0 04. .± 0 93 0 04. .±
3 0.92 ± 0.02 0 86 0 04. .± 0 97 0 01. .±
4 0.91 ± 0.03 0 85 0 05. .±
5 0 91 0 03. .± 0 83 0 05. .± 0.99 ± 0.01
6 0 90 0 03. .± 0.82 ± 0.06 0.99 ± 0.01
7 0 89 0 04. .± 0.80 ± 0.07 0.99 ± 0.01
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among volumes of NC and MCI, and NC and AD subjects were con-
firmed with the paired analysis of variance using a one-way ANOVA
(Fig. 3), in which p-values, corrected with Tukey–Kramer method, are
reported in Table 3. However MCI volumes were not statistically dif-
ferent from those of ADs in the left hemisphere, whereas only the
NCs and ADs were statistically different in the right hemisphere.

A comparison of the hippocampal shapes between the three
groups was then performed through the SPHARM-MAT toolbox. In
Fig. 4, significant T-values (p < 0.05) from a paired t-test between
the positions of each vertex of the hippocampal surfaces of the three
groups are reported.

Test on D2 dataset

To assess the robustness of the presented method, the models
built on the cohort D1 were applied on the external cohort D2. All
the ROIs were subject to the same preprocessing steps applied to
the D1 scans, and the final segmentation was defined by the majority

voting among the 10 classifiers built with the 10-fold cross vali-
dation on D1. As shown in Table 1, although the performance on
D2 was slightly lower than that on D1, as one could expect, it re-
mained comparable. This confirmed the reliability of the entire
learning process made on D1.

Conclusion

Hippocampal atrophy is an established biomarker for a number
of neurodegenerative pathologies, such as the AD. Here we have pro-
posed an algorithm based on the use of multiple RF classifiers, aimed
to segment local portions of the hippocampus. Because of the
complex morphological structure of subcortical regions, we have
proposed a fusion approach, where the ROI is “seen” by the clas-
sifiers from different directions, in order to exploit local shape
patterns. To reduce the class imbalance in the ROI, we introduced
a filtering mask, modeled on the true hippocampal shapes. A study
of the dilation parameter associated to this filter showed that only
the voxels in the neighborhood of the hippocampus boundaries are
necessary to achieve the best prediction accuracy and the most bal-
anced classifier.

The effectiveness of our method was confirmed by comparing
its performance with those of a single RF applied to the entire ROI,
subject to the same filtering mask. Indeed, we could observe that
the multiple classifiers performed better in both hemispheres. This
can be justified by the fact that the multiple classifiers were de-
signed to catch local patterns in contrast to a general model of the
entire hippocampus as learned by the single classifier.

Using two datasets consisting of 50 subjects each divided into
cohorts of Normal Controls, Mild Cognitive Impairment, and Al-
zheimer’s Disease patients, we assessed the validity of our approach
with a 10-fold cross validation. We obtained a DSC of 0.87 for the
left and right hemispheres, results that are comparable to state-
of-the-art [18], and represented an improvement on our previous
work [15–17], where we used a single RF classifier with an anal-
ogous filtering approach. The classifier, when used on the second
dataset, which was not involved during the training and tuning phase,
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Figure 3. Box plot of the predicted volumes for the three subject groups.

Table 3
Multiple comparisons between volumes of the three groups of subjects. In the second
column the 95% confidence interval of the difference between the volumes of the
two groups is shown, and in the third column the estimated mean volume differ-
ences are reported. In the fourth column the corrected p-values are reported.

Left hemisphere

Group difference 95% confidence
interval*

Estimated
mean

p-value

NC/MCI [111.4, 1322.0] 716.7 0.02
NC/AD [485.4, 1677.7] 1081.5 2*10−4

MCI/AD [−220.6, 950.3] 364.9 0.294

Right hemisphere

Group difference 95% confidence
interval*

Estimated
mean

p-value

NC/MCI [−120.1, 1040.7] 460.3 0.143
NC/AD [276.4, 1419.5] 848.0 0.002
MCI/AD [−173.6, 949.0] 387.7 0.223

* Lower and upper limits for 95% confidence intervals for the true mean difference.
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showed comparable performance, with a slight, but expected,
decreased DSC. Furthermore, the presented method was able to out-
perform FreeSurfer, which resulted in a DSC of 0.74 ± 0.05 for the
left hemisphere and 0.76 ± 0.05 for the right hemisphere.

We also mapped the local differences between the shapes of the
three groups’ hippocampi. This analysis was intended sorely to
confirm the reliability of the proposed method, since we used the
raw p-values without multiple test corrections. However, it is in-
teresting to notice that the deformations of the hippocampi obtained
by the automated segmentation are consistent with those of [19,20],

where NCs and ADs are significantly different, whereas other paired
tests do not show significant differences. Furthermore, the local
atrophy of the bottom part of the tail and head of the hippocam-
pus was consistent with those previous works.

Another advantage of the presented method relies on its scal-
ability on large datasets, being a slice-by-slice classification followed
by a fusion. Indeed, in a cluster environment, we were able to
perform the entire classification in the time necessary for the clas-
sification of a single slice (about 5 minutes per cross validation
round). On the other hand, the same task was performed by the

Figure 4. T-value color map is reported. Positive and negative T-values represent the outward and inward shape differences between the three groups of subjects.
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single classifier in about 40 minutes. In view of the EADC-ADNI
initiative in developing the HarP protocol as a shared segmenta-
tion protocol for the hippocampus, acceleration of the processing
time for large datasets can represent an important practical aspect
of our work.
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