603 research outputs found

    Minimal half-spaces and external representation of tropical polyhedra

    Full text link
    We give a characterization of the minimal tropical half-spaces containing a given tropical polyhedron, from which we derive a counter example showing that the number of such minimal half-spaces can be infinite, contradicting some statements which appeared in the tropical literature, and disproving a conjecture of F. Block and J. Yu. We also establish an analogue of the Minkowski-Weyl theorem, showing that a tropical polyhedron can be equivalently represented internally (in terms of extreme points and rays) or externally (in terms of half-spaces containing it). A canonical external representation of a polyhedron turns out to be provided by the extreme elements of its tropical polar. We characterize these extreme elements, showing in particular that they are determined by support vectors.Comment: 19 pages, 4 figures, example added with a new figure, figures improved, references update

    The level set method for the two-sided eigenproblem

    Full text link
    We consider the max-plus analogue of the eigenproblem for matrix pencils Ax=lambda Bx. We show that the spectrum of (A,B) (i.e., the set of possible values of lambda), which is a finite union of intervals, can be computed in pseudo-polynomial number of operations, by a (pseudo-polynomial) number of calls to an oracle that computes the value of a mean payoff game. The proof relies on the introduction of a spectral function, which we interpret in terms of the least Chebyshev distance between Ax and lambda Bx. The spectrum is obtained as the zero level set of this function.Comment: 34 pages, 4 figures. Changes with respect to the previous version: we explain relation to mean-payoff games and discrete event systems, and show that the reconstruction of spectrum is pseudopolynomia

    Perron-Frobenius theorem for nonnegative multilinear forms and extensions

    Full text link
    We prove an analog of Perron-Frobenius theorem for multilinear forms with nonnegative coefficients, and more generally, for polynomial maps with nonnegative coefficients. We determine the geometric convergence rate of the power algorithm to the unique normalized eigenvector.Comment: 13 page

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    Tropical Fourier-Motzkin elimination, with an application to real-time verification

    Get PDF
    We introduce a generalization of tropical polyhedra able to express both strict and non-strict inequalities. Such inequalities are handled by means of a semiring of germs (encoding infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin elimination from which we derive geometrical properties of these polyhedra. In particular, we show that they coincide with the tropically convex union of (non-necessarily closed) cells that are convex both classically and tropically. We also prove that the redundant inequalities produced when performing successive elimination steps can be dynamically deleted by reduction to mean payoff game problems. As a complement, we provide a coarser (polynomial time) deletion procedure which is enough to arrive at a simply exponential bound for the total execution time. These algorithms are illustrated by an application to real-time systems (reachability analysis of timed automata).Comment: 29 pages, 8 figure

    Tropical analogues of a Dempe-Franke bilevel optimization problem

    Get PDF
    We consider the tropical analogues of a particular bilevel optimization problem studied by Dempe and Franke and suggest some methods of solving these new tropical bilevel optimization problems. In particular, it is found that the algorithm developed by Dempe and Franke can be formulated and its validity can be proved in a more general setting, which includes the tropical bilevel optimization problems in question. We also show how the feasible set can be decomposed into a finite number of tropical polyhedra, to which the tropical linear programming solvers can be applied.Comment: 11 pages, 1 figur

    Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models

    Get PDF
    We study the growth rate of a cell population that follows an age-structured PDE with time-periodic coefficients. Our motivation comes from the comparison between experimental tumor growth curves in mice endowed with intact or disrupted circadian clocks, known to exert their influence on the cell division cycle. We compare the growth rate of the model controlled by a time-periodic control on its coefficients with the growth rate of stationary models of the same nature, but with averaged coefficients. We firstly derive a delay differential equation which allows us to prove several inequalities and equalities on the growth rates. We also discuss about the necessity to take into account the structure of the cell division cycle for chronotherapy modeling. Numerical simulations illustrate the results.Comment: 26 page

    Cyclic projectors and separation theorems in idempotent convex geometry

    Full text link
    Semimodules over idempotent semirings like the max-plus or tropical semiring have much in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of the n-fold cartesian product of the max-plus semiring it is known that one can separate a vector from a closed subsemimodule that does not contain it. We establish here a more general separation theorem, which applies to any finite collection of closed semimodules with a trivial intersection. In order to prove this theorem, we investigate the spectral properties of certain nonlinear operators called here idempotent cyclic projectors. These are idempotent analogues of the cyclic nearest-point projections known in convex analysis. The spectrum of idempotent cyclic projectors is characterized in terms of a suitable extension of Hilbert's projective metric. We deduce as a corollary of our main results the idempotent analogue of Helly's theorem.Comment: 20 pages, 1 figur

    Combinatorial simplex algorithms can solve mean payoff games

    Full text link
    A combinatorial simplex algorithm is an instance of the simplex method in which the pivoting depends on combinatorial data only. We show that any algorithm of this kind admits a tropical analogue which can be used to solve mean payoff games. Moreover, any combinatorial simplex algorithm with a strongly polynomial complexity (the existence of such an algorithm is open) would provide in this way a strongly polynomial algorithm solving mean payoff games. Mean payoff games are known to be in NP and co-NP; whether they can be solved in polynomial time is an open problem. Our algorithm relies on a tropical implementation of the simplex method over a real closed field of Hahn series. One of the key ingredients is a new scheme for symbolic perturbation which allows us to lift an arbitrary mean payoff game instance into a non-degenerate linear program over Hahn series.Comment: v1: 15 pages, 3 figures; v2: improved presentation, introduction expanded, 18 pages, 3 figure
    corecore