Semimodules over idempotent semirings like the max-plus or tropical semiring
have much in common with convex cones. This analogy is particularly apparent in
the case of subsemimodules of the n-fold cartesian product of the max-plus
semiring it is known that one can separate a vector from a closed subsemimodule
that does not contain it. We establish here a more general separation theorem,
which applies to any finite collection of closed semimodules with a trivial
intersection. In order to prove this theorem, we investigate the spectral
properties of certain nonlinear operators called here idempotent cyclic
projectors. These are idempotent analogues of the cyclic nearest-point
projections known in convex analysis. The spectrum of idempotent cyclic
projectors is characterized in terms of a suitable extension of Hilbert's
projective metric. We deduce as a corollary of our main results the idempotent
analogue of Helly's theorem.Comment: 20 pages, 1 figur