20,686 research outputs found
Stretched exponential relaxation in the Coulomb glass
The relaxation of the specific heat and the entropy to their equilibrium
values is investigated numerically for the three-dimensional Coulomb glass at
very low temperatures. The long time relaxation follows a stretched exponential
function, , with the exponent increasing
with the temperature. The relaxation time follows an Arrhenius behavior
divergence when . A relation between the specific heat and the entropy
in the long time regime is found.Comment: 5 pages and 4 figure
Breakup of three particles within the adiabatic expansion method
General expressions for the breakup cross sections in the lab frame for
reactions are given in terms of the hyperspherical adiabatic basis. The
three-body wave function is expanded in this basis and the corresponding
hyperradial functions are obtained by solving a set of second order
differential equations. The -matrix is computed by using two recently
derived integral relations. Even though the method is shown to be well suited
to describe processes, there are nevertheless particular configurations
in the breakup channel (for example those in which two particles move away
close to each other in a relative zero-energy state) that need a huge number of
basis states. This pathology manifests itself in the extremely slow convergence
of the breakup amplitude in terms of the hyperspherical harmonic basis used to
construct the adiabatic channels. To overcome this difficulty the breakup
amplitude is extracted from an integral relation as well. For the sake of
illustration, we consider neutron-deuteron scattering. The results are compared
to the available benchmark calculations
Recombination rates from potential models close to the unitary limit
We investigate universal behavior in the recombination rate of three bosons
close to threshold. Using the He-He system as a reference, we solve the
three-body Schr\"odinger equation above the dimer threshold for different
potentials having large values of the two-body scattering length . To this
aim we use the hyperspherical adiabatic expansion and we extract the -matrix
through the integral relations recently derived. The results are compared to
the universal form, , for
different values of and selected values of the three-body parameter
. A good agreement with the universal formula is obtained after
introducing a particular type of finite-range corrections, which have been
recently proposed by two of the authors in Ref.[1]. Furthermore, we analyze the
validity of the above formula in the description of a very different system:
neutron-neutron-proton recombination. Our analysis confirms the universal
character of the process in systems of very different scales having a large
two-body scattering length
Origin of three-body resonances
We expose the relation between the properties of the three-body continuum
states and their two-body subsystems. These properties refer to their bound and
virtual states and resonances, all defined as poles of the -matrix. For one
infinitely heavy core and two non-interacting light particles, the complex
energies of the three-body poles are the sum of the two two-body complex
pole-energies. These generic relations are modified by center-of-mass effects
which alone can produce a Borromean system. We show how the three-body states
evolve in He, Li, and Be when the nucleon-nucleon interaction is
continuously switched on. The schematic model is able to reproduce the main
properties in their spectra. Realistic calculations for these nuclei are shown
in detail for comparison. The implications of a core with non-zero spin are
investigated and illustrated for Ne (O+p+p). Dimensionless units
allow predictions for systems of different scales.Comment: 15 pages, 7 figure
Temporal video transcoding from H.264/AVC-to-SVC for digital TV broadcasting
Mobile digital TV environments demand flexible video compression like scalable video coding (SVC) because of varying bandwidths and devices. Since existing infrastructures highly rely on H.264/AVC video compression, network providers could adapt the current H.264/AVC encoded video to SVC. This adaptation needs to be done efficiently to reduce processing power and operational cost. This paper proposes two techniques to convert an H.264/AVC bitstream in Baseline (P-pictures based) and Main Profile (B-pictures based) without scalability to a scalable bitstream with temporal scalability as part of a framework for low-complexity video adaptation for digital TV broadcasting. Our approaches are based on accelerating the interprediction, focusing on reducing the coding complexity of mode decision and motion estimation tasks of the encoder stage by using information available after the H. 264/AVC decoding stage. The results show that when our techniques are applied, the complexity is reduced by 98 % while maintaining coding efficiency
Probing the Stellar Surface of HD 209458 from Multicolor Transit Observations
Multicolor photometric observations of a planetary transit in the system HD
209458 are analyzed. The observations, made in the Stromgren photometric
system, allowed a recalculation of the basic physical properties of the
star-planet system. This includes derivation of linear limb-darkening values of
HD 209458, which is the first time that a limb-darkening sequence has
observationally been determined for a star other than the Sun. As the derived
physical properties depend on assumptions that are currently known with limited
precision only, scaling relations between derived parameters and assumptions
are given. The observed limb-darkening is in good agreement with theoretical
predictions from evolutionary stellar models combined with ATLAS model
atmospheres, verifying these models for the temperature (Teff ~ 6000K), surface
gravity (log g ~ 4.3) and mass (~ 1.2 Msol) of HD 209458.Comment: 16 pages, 8 figures, uses elsart.cls, accepted for New Astronom
Numerical study of relaxation in electron glasses
We perform a numerical simulation of energy relaxation in three-dimensional
electron glasses in the strongly localized regime at finite temperatures. We
consider systems with no interactions, with long-range Coulomb interactions and
with short-range interactions, obtaining a power law relaxation with an
exponent of 0.15, which is independent of the parameters of the problem and of
the type of interaction. At very long times, we always find an exponential
regime whose characteristic time strongly depends on temperature, system size,
interaction type and localization radius. We extrapolate the longest relaxation
time to macroscopic sizes and, for interacting samples, obtain values much
larger than the measuring time. We finally study the number of electrons
participating in the relaxation processes of very low energy configurations.Comment: 6 eps figures. To be published in Phys. Rev.
Influence of Dislocations in Thomson's Problem
We investigate Thomson's problem of charges on a sphere as an example of a
system with complex interactions. Assuming certain symmetries we can work with
a larger number of charges than before. We found that, when the number of
charges is large enough, the lowest energy states are not those with the
highest symmetry. As predicted previously by Dodgson and Moore, the complex
patterns in these states involve dislocation defects which screen the strains
of the twelve disclinations required to satisfy Euler's theorem.Comment: 9 pages, 4 figures in gif format. Original PS files can be obtained
in http://fermi.fcu.um.es/thomso
- …