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We investigate universal behavior in the recombination rate of three bosons close to threshold. Using the
He-He system as a reference, we solve the three-body Schrödinger equation above the dimer threshold for different
potentials having large values of the two-body scattering length a. To this aim, we use the hyperspherical adiabatic
expansion and we extract the S matrix through the integral relations recently derived. The results are compared to
the universal form, α ≈ 67.1 sin2[s0 ln(κ∗a) + γ ], for different values of a and selected values of the three-body
parameter κ∗. A good agreement with the universal formula is obtained after introducing a particular type of finite-
range corrections, which have been recently proposed [A. Kievsky and M. Gattobigio, Phys. Rev. A 87, 052719
(2013)]. Furthermore, we analyze the validity of the above formula in the description of a very different system:
neutron-neutron-proton recombination. Our analysis confirms the universal character of the process in systems
of very different scales having a large two-body scattering length.
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I. INTRODUCTION

The system of three identical bosons having a large
two-body scattering length has been the subject of intense
investigations in recent years. As shown by Efimov in a
sequence of papers [1,2], the three-body spectrum consists
of an infinite number of states that accumulate to zero with
the ratio between two consecutive states being En+1

3 /En
3 =

e−2π/s0 . In other words, in the limit a → ∞, the two-body
system shows a continuous scale invariance that is broken in
the s-wave three-body sector of a bosonic system. The residual
symmetry is the discrete scale invariance (DSI); namely, the
physics is invariant under the rescaling r → �nr , where the
constant is usually written � = eπ/s0 , with s0 ≈ 1.00624 a
universal number that characterizes a system of three identical
bosons.

The DSI constrains the form of the observables to be log-
periodic functions of the control parameters. One example is
the atom-dimer scattering length, which has the general form

aAD/a = d1 + d2 tan[s0 ln(aκ∗) + d3], (1)

where d1, d2, d3 are universal constants [3]. For atom-dimer
collisions below the dimer breakup threshold, DSI imposes the
following universal form for the effective-range function:

ka cot δ = c1(ka) + c2(ka) cot[s0 ln(aκ∗) + φ(ka)] , (2)

with δ the atom-dimer phase shift and c1, c2, φ universal
functions of the dimensionless variable ka, where k2 =
(4/3)Ei/(h̄2/m), where Ei is the incident energy in the
atom-dimer center-of-mass frame and m is the boson mass.
It is well known that for k → 0, the effective-range function
satisfies the limit ka cot δ → −a/aAD, which implies that at
k = 0, the constants d1, d2, d3 and c1(0), c2(0), φ(0) are related
by simple trigonometric relations. A parametrization of the
universal constants and functions can be found in Ref. [3].

The DSI also constrains the form of the S matrix for
collisions above the dimer threshold, leading to the following

peculiar form for the recombination rate at threshold [4–6]:

K3 = 128π2(4π − 3
√

3)

sinh2(πs0) + cosh2(πs0) cot2[s0 ln(aκ∗) + γ ]

h̄a4

m
,

(3)

which, by using the large value of the factor e2πs0 ≈ 515, can
be approximated by

K3 = α a4h̄/m ≈ 67.1 sin2[s0 ln(κ∗a) + γ ]a4h̄/m, (4)

where γ = 1.16 [3].
In this work, we study in detail the universal behavior of α

by solving the Schrödinger equation for a family of attractive
two-body Gaussian potentials describing the He-He system.
These potentials are constructed to reproduce the two-body
binding energy E2, the two-body scattering length a, and
the effective range rs of the LM2M2 potential, widely used
in the literature [7]. The variation of the potential strength
produces different values of the scattering length a, allowing
a comparison of the recombination rate given by Eq. (3). The
model includes a three-body interaction necessary to tune
the trimer energy of the LM2M2 potential. This procedure
is equivalent, up to range corrections, to the implementation
of effective-field theory (EFT) at leading order (LO). This
strategy has been used before in the study of the atom-dimer
effective-range function ka cot δ [8]. It has been found that
the zero-range formula of Eq. (2) has to be modified in
order to describe results obtained through the solution of
the Schrödinger equation using finite-range potentials. The
modification consists in a shift on the variable κ∗a, and in the
replacement of ka cot δ by kaB cot δ, where aB is related to
the two-body binding energy through E2 = h̄2/ma2

B . In the
present analysis, we find that the same type of modification
has to be made in order to describe the numerical results.

The universal character of Eq. (3) allows its application
to very different systems. Here we extend the study on
atomic systems to describe a nuclear system: the neutron-
neutron-proton recombination rate close to threshold. This
study is twofold. On one hand, we would like to confirm that
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systems whose energies and sizes differ by several order of
magnitude are still described by the same universal equation.
On the other hand, very low-energy recombination in nuclear
systems can be achieved in stars, and the present study can
therefore be applied to those systems in which the three-body
structure is dominant, e.g., neutron-neutron-core systems. As
an example, we can mention the recently performed studies in
recombination of 3H [9] and low-energy n−19C collisions [10].

Finally, we remark that in cold-atom physics, the search
for universal behavior is a very active sector of research.
At present, there is intense experimental activity to study
Efimov physics in trapped ultracold gases. In these systems,
the recombination rate is of major importance since it is the
main loss mechanism. Three different values of the two-body
scattering length have relevance: a−, which characterizes the
threshold where the trimer disappears into the three-atom
continuum; a∗, which characterizes the threshold where the
trimer disappears into the atom-dimer continuum; and a+,
which characterizes a minimum in the recombination rate.
Discrepancies are found between the zero-range theoretical
predictions and experimental determinations of these three
quantities [11–14]. In this respect, we would like to see if the
quantities obtained from the calculations using finite-range
potentials are in better agreement with the experimental
predictions.

The paper is organized as follows. In the next section,
the two-body and three-body potential models are introduced
and the results for the first two energy levels are discussed.
The main results of this work are given in Sec. III, which is
divided into four sections dedicated to analyze the elastic and
breakup cross sections, the recombination and dissociation
rates, a comparison of the results to experimental data, and
nucleon-deuteron scattering above threshold. The conclusions
are given in the last section.

II. THE THREE-BOSON SYSTEM

In this section, we study universal aspects of a three-boson
system by taking the three-helium system as reference. At the
two-body level, we consider one of the most commonly used
He-He potentials, i.e., the LM2M2 interaction [7], which is
taken as the reference interaction. In particular, in order to
explore the (a−1,κ) plane (κ = sgn(E)[|E|/(h̄2/m)]1/2, with
E the energy level), we modify this potential as

Vλ(r) = λVLM2M2(r). (5)

Examples of this strategy exist in the literature [15–17]. For
λ ≈ 0.9743, the interaction is close to the unitary limit (a →
∞). For λ = 1, the values predicted by the LM2M2 are recov-
ered: the scattering length a = 189.41 a0, the two-body energy
E2 = −1.303 mK, and the effective range re = 13.845 a0, with
the mass parameter h̄2/m = 43.281307(a0)2 K.

Following Refs. [8,17,18], we define an attractive two-body
Gaussian (TBG) potential

V (r) = V0e
−r2/r2

0 , (6)

with range r0 = 10 a0 and strength V0 fixed to reproduce the
values of a given by Vλ(r). For example, with the strength
V0 = −1.2343566 K, corresponding to λ = 1, the LM2M2

low-energy data are closely reproduced, E2 = −1.303 mK,
a = 189.42 a0, and re = 13.80 a0.

The use of the TBG potential in the three-atom system
produces a ground-state binding energy appreciably deeper
than the one calculated with Vλ(r). For example, at λ = 1,
the LM2M2 helium-trimer ground-state binding energy is
E0

3 = 126.4 mK, whereas the one obtained using the two-body
soft-core potential in Eq. (6) is 151.32 mK. To solve this
discrepancy, we introduce a repulsive hypercentral three-body
(H3B) interaction

W (ρ123) = W0e
−ρ2

123/ρ
2
0 , (7)

with the strength W0 tuned to reproduce the trimer energy
E0

3 obtained with Vλ(r) for all of the explored values of λ.
Here, ρ2

123 = 2
3 (r2

12 + r2
23 + r2

31) is the hyperradius of three
identical particles and ρ0 gives the range of the three-body
force. Following Ref. [17], we use ρ0 = r0. It should be noticed
that the description of the three-boson systems using a two-
body plus three-body interaction constructed to reproduce the
low-energy data is equivalent, up to finite-range corrections, to
a description based on EFT at LO (see Ref. [19] and references
therein).

By varying λ from the unitary limit to λ = 1.1, we obtain a
set of values for the ground-state binding energy E0

3 and first
excited state E1

3 using the TBG and TBG + H3B potentials
in a broad range of a. The results can be compared to the
predictions given by the Efimov’s binding-energy equations,

En
3 + h̄2

ma2
= e−2(n−n∗)π/s0 exp [�(ξ )/s0]

h̄2κ2
∗

m
, (8)

where tan ξ = −(mEn
3 /h̄2)1/2a and the function �(ξ ) can be

found in [3]. Fixing n∗ = 1, the three-body parameter κ∗ is
determined by calculating E1

3 at the unitary limit; we obtain
κ∗ = 2.119 × 10−3 a−1

0 and κ∗ = 1.899 × 10−3a−1
0 for the

TBG and TBG + H3B, respectively.
It has been shown in Ref. [8] that in order to be in accord

with the numerical results obtained solving a finite-range
potential, the universal relation given by Eq. (8) must be
modified in the following way:

En
3 /E2 = tan2 ξ,

(9)
κ∗a = e(n−n∗)π/s0 exp [−�(ξ )/2s0]/ cos ξ − 
n,

where the finite-range nature of the interaction has been taken
into account by the substitution h̄2/ma2 → E2, and by the
shift 
n. In Fig. 1, we collect our numerical results for the
ratios E0

3/E2 and E1
3/E2 as a function of κ∗a for the TBG

potential (circles) and of the TBG + H3B potential (squares).
In the upper panel of Fig. 1, we report the calculations for the
ground state. The dashed line corresponds to Eq. (9) without
shift, while the solid line, which fits our numerical results, has

0 � 3 × 10−2. In the lower panel of Fig. 1, we report the
calculations for the excited state. As above, the dashed line
corresponds to Eq. (9) without shift, while the solid line has a
finite shift, 
1 � 4 × 10−2.

A more accurate analysis of the numerical results reveals
that the shift depends on κ∗ [8]; in the first approximation,
for the excited state, we can write 
1 � κ∗r∗ with r∗ ≈ 21 a0.
From Eq. (9), we can extract a1

∗ , which is the scattering length
at which the excited state E1

3 disappears into the atom-dimer
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FIG. 1. (Color online) Ratio between the energy of the ground
(upper panel) and first excited (lower panel) state of the trimer and
the dimer binding energy as a function of κ∗a. The dashed line is
the universal prediction of the Efimov law given by Eq. (9) without
shift (
n = 0), while the solid line is the translated universal curve.
The circles and squares are the calculations using the TBG and
TBG + H3B potentials, respectively.

continuum. This happens when E1
3/E2 = 1 or the angle ξ =

−π/4. Using the very accurate result, �(−π/4) = 6.0273,
given in Ref. [3], we obtain the relation

κ∗a1
∗ = 0.07076 − 
1, (10)

which in our case gives a1
∗ ≈ 14.5a0 and a1

∗ ≈ 16.2a0 for
the TBG and TBG + H3B potentials, respectively. Moreover,
dividing the above relation by κ∗, we can write r∗ = a1

∗,zr − a1
∗ ,

where we have introduced the universal zero-range scattering
length a1

∗,zr = 0.07076/κ∗. From this relation, we can interpret
the shift, in units of κ−1

∗ , as the difference between the
zero-range and the finite-range predictions for a∗. In addition,
the relation applied to the n = 1 branch can be extended to the
different n branches.

III. ATOM-DIMER SCATTERING ABOVE
THE BREAKUP THRESHOLD

In Ref. [8], the universal character of the atom-dimer
scattering below the breakup threshold has been discussed
in terms of the potential model introduced in the previous
section. It has been shown that when finite-range interactions
are used, the universal formula of the atom-dimer scattering

length given in Eq. (1) can be modified as

aAD/aB = d1 + d2 tan[s0 ln(κ∗a + 
∗) + d3], (11)

where aB is defined from the relation E2 = h̄2/ma2
B , and 
∗ �


1 is the shift for the atom-dimer scattering
Moreover, the effective-range function of Eq. (2) can be

adapted to describe finite-range interactions too. In particular,
it is given by

kaB cot δ = c1(ka) + c2(ka) cot[s0 ln(κ∗a + 
e) + φ(ka)],

(12)

with the effective-range shift 
e � 4 × 10−2 [8]. This modified
equation agrees with the numerical calculations of Ref. [8],
which have been performed by using the potential models of
the previous section and the hyperspherical harmonic (HH)
method in conjunction with the Kohn variational principle
[20], for a wide range of values of κ∗a varying from 0.26
to 0.94. In this range, the effective-range function presents
different patterns as a function of the energy. For the lowest
values of κ∗a, it was almost linear, whereas when increasing
κ∗a, a pole structure appeared (see Fig. 4 of Ref. [8]). In
addition, it was shown that around the value κ∗a ≈ 0.54,
the structure of the effective-range function coincides with
the one describing neutron-deuteron scattering. In this way, a
confirmation of the universal character of Eqs. (11) and (12)
has been done for systems with very different typical lengths.

The fact that 
e ≈ 
∗ ≈ 
1 can be understood noticing
that, for the values of a considered, E1

3 is the only excited
state of the three-boson system. Probably, for larger values of
a, when a second excited state appears, a different shift has
to be considered. The analysis of atom-dimer scattering for
larger values of a is a numerically difficult task and remains
outside the scope of the present work. From Eq. (11), it is
possible to extract the value of a1

∗ by equating the argument
of the tangent to −π/2. Using the value of d3 = 1.100 given
in Ref. [8], the results are a1

∗ ≈ 14.3a0 and a1
∗ ≈ 16.0a0 for

the TBG and TBG + H3B potentials, respectively, in complete
agreement with those obtained using Eq. (9). These values can
be used to evaluate the ratio a1

∗/a
0
− that appears frequently in

the literature from measurements on trapped ultracold atoms
[11,12,14]. The universal zero-range theory predicts a1

∗/a
0
− ≈

−1.06, whereas using the values a0
− ≈ −43.3a0 and a0

− ≈
−48.1a0 for the TBG and TBG + H3B potentials, respectively,
given in Ref. [17], we obtain a1

∗/a
0
− ≈ −0.32 in both cases.

An analysis of the present result in comparison to those given
by different experimental groups is given in Sec. III C.

A. Elastic and breakup cross sections

The universal character of Eqs. (11) and (12) has been
deeply studied in Ref. [8] in a large range of a values. Here
we extend the analysis of atom-dimer scattering to energies
above the breakup threshold. In particular, we study the
universal form predicted by Petrov [6] for the recombination
rate at threshold. To this aim, we make use of the adiabatic
expansion method as discussed in Refs. [21,22] for energies
below the dimer breakup threshold and recently extended to
energies above that threshold [23]. As it is well known, the
adiabatic expansion method is a very powerful method used to
describe bound states [24]. However, the extension to describe

032701-3



E. GARRIDO, M. GATTOBIGIO, AND A. KIEVSKY PHYSICAL REVIEW A 88, 032701 (2013)

scattering states encountered some difficulties, in particular in
the case of atom-dimer elastic scattering. The problem arose
from the difference between the set of coordinates in which
the process has a natural asymptotic description (the usual
Jacobi coordinates) and the expansion in terms of hyperradial
functions which produced a low rate of convergence. In order
to circumvent the problem, two integral relations have been
derived in Ref. [25] and already applied several times in the lit-
erature [18,21,26]. Essentially, the method establishes that the
scattering matrix is obtained from the following two matrices:

Bij = 2m

h̄2

〈
�t

i

∣∣Ĥ − E|Fj 〉, (13)

Aij = −2m

h̄2

〈
�t

i

∣∣Ĥ − E|Gj 〉, (14)

where the indexes i,j label the ingoing and outgoing channels
(either elastic or inelastic), �t

i is the solution of the adiabatic
equations at a given energy E, and Fj ,Gj are the ingoing
and outgoing solutions of the free Schrödinger equation (T −
E)F,G = 0 (see Ref. [23] for details). The S matrix is then
given by the product A−1B. The integral relations have a short-
range character, and the problem mentioned above of the mis-
match of the coordinates has no consequences once the internal
part of the scattering wave function is properly described.

For energies above the dimer breakup threshold, the
unitarity of the S matrix implies that given an incoming
channel, for instance, channel 1 (1 + 2 channel), we have

∞∑

n=2

|S1n|2 = 1 − |S11|2, (15)

which means that computation of the elastic term S11 amounts
to computation of the infinite summation of the |S1n|2 terms
(n > 1) corresponding to the breakup channels. The complex
value of S11 can be written in terms of a complex phase
shift δ as

S11 = e2iδ = e−2Im(δ)e2iRe(δ) = |S11|e2iRe(δ). (16)

The value of |S11|2 gives the probability of elastic atom-dimer
scattering, and |S11| is usually referred to as the inelasticity
parameter (for example, denoted by η in [27–30]). Obviously,
the closer the inelasticity to 1, the more elastic the reaction. In
fact, for energies below the breakup threshold, the phase shift
is real and |S11| = 1.

The convergence pattern of the method has been studied in
Ref. [23], where the inelasticity (|S11|) and the real part of the
phase shift [Re(δ)] have been calculated at selected energies
for increasing values of Kmax (grand-angular quantum number
associated to the last adiabatic term included in the expansion
of the scattering wave function). The conclusion was that the
use of the integral relations produces a pattern of convergence
similar to a bound-state calculation. For example, a Kmax

value of around 12 is enough to get a rather well-converged
inelasticity, while Re(δ) requires a few more adiabatic terms
in order to reach convergence.

To make contact with the results in Ref. [8], in Fig. 2
we show the effective-range function of the TBG potential
corresponding to κ∗a = 0.36 (upper panel) and κ∗a = 0.56
(lower panel) for a wide range of energies. For energies below
the dimer threshold, the red circles are the results of Ref. [8],
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FIG. 2. (Color online) The effective-range function as a function
of (ka)2 for two different values of κ∗a; in the upper panel,
κ∗a = 0.36, and, in the lower panel, κ∗a = 0.56. The dimer threshold
corresponds to (ka)2 ≈ 4/3. The (red) circles are the calculations
below the dimer threshold of Ref. [8]. The (green) triangles are the
present calculations. The solid line is Eq. (12), whereas the dashed
line is an effective-range parametrization (see text).

whereas for energies above the dimer threshold, our results
obtained using Re(δ) in the definition of the effective-range
function are given by the green triangles. The solid line has
been obtained applying Eq. (12), and the dashed line is the
effective-range parametrization of the low-energy points; in
the upper panel, the effective range is k cot δ ≈ −1/aAD +
1/2 reff k2, with reff used as a parameter. In the lower
panel, a pole structure dominates the low-energy behavior
of the effective-range function, which is better parametrized
by k cot δ ≈ (−1/aAD + 1/2 reff k2 − P r3

eff k4)/(1 + k2/k2
0);

in addition to the effective range, we must introduce the shape
parameter P and the momentum of the pole k0. From the
figure, we can observe that the universal form of Eq. (12) does
not describe the points above the dimer threshold. On the other
hand, the effective-range parametrization remains close to the
computed values in a larger range.

Limiting the discussion to the L = 0 channel, the de-
termination of the elastic matrix element S11 permits the
computation of the elastic (σe) and breakup (σb) cross sections,
which are given by the well-known expressions

σe = π

k2
|1 − S11|2, (17)

σb = π

k2
(1 − |S11|2), (18)
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FIG. 3. (Color online) Atom-dimer elastic (solid line) and
breakup (dashed line) cross sections as a function of the atom incident
energy for a three-helium atom system and the TBG + H3B potential.
The breakup channel is open at Ei = E2 = 1.303 mK. The zoom
shows the behavior close to both thresholds, i.e., Ei = 0 for the
elastic case and Ei = E2 for the breakup case. The circles correspond
to actual calculations, while the curves are interpolations.

with k2 = (4/3)Ei/(h̄2/m) and E = Ei + E2, which is the
total energy of the process.

Following the method described in [23], we have computed
σe and σb for the TBG + H3B potential (λ = 1 case). The
results are given by the solid and dashed curves in Fig. 3,
respectively, where the cross sections are shown for incident
energies Ei up to 50 mK. At this energy, both cross sections
have a similar size. In the figure, the corresponding behavior at
threshold is zoomed. In the case of the elastic scattering, when
Ei approaches 0, the cross section reaches the constant value
of σe → 4πa2

AD. In the case of the breakup cross section,
the threshold corresponds to E = 0 (or Ei = E2), and we
have that for E → 0, the breakup cross section σb behaves as
σb ∝ E2/(E − E2) (or, in other words, 1 − |S11|2 ∝ E2).

B. Recombination and dissociation rates

The breakup cross section described in the previous
section is directly related to the dissociation rate, D3, for
the 4He2 +4He →4 He +4He +4He process. In particular, for
three identical bosons with angular momentum and parity 0+,
it takes the form [31]

D3 = h̄
k

μA,d

σb = h̄π

μA,dk
(1 − |S11|2), (19)

where μA,d = (2/3)m is the atom-dimer reduced mass and m

is the mass of the atom.
Also, making use of the detailed balance principle, it is

possible to relate σb to the cross section corresponding to the
inverse process 4He +4He +4He →4 He2 +4He. This permits
one to obtain the recombination rate K3 for such process in
terms of the inelasticity parameter. In particular, again for three
identical bosons with angular momentum and parity 0+, K3
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FIG. 4. (Color online) The recombination rate K3 and the
dissociation rate D3 for three-helium atoms with the TBG + H3B
potential (λ = 1) as a function of the three-body energy E.

takes the form [31]

K3 = 3!
32h̄π2

μk4
3

(1 − |S11|2), (20)

where μ2 = m2/3 and k2
3 = 2E/(h̄2/μ).

At low energies, K3 is proportional to EKm , as demonstrated
in Ref. [32] (Km is the smallest grand-angular quantum number
associated with the continuum adiabatic channels). In the
present case, Km = 0 and K3 is almost constant as E → 0. In
the case of D3, its low-energy behavior follows the EKm+2 rule
derived in Ref. [32]. These behaviors can be seen in Fig. 4 in
which K3 and D3 are displayed as a function of the three-body
energy E for the TBG + H3B calculation (λ = 1 case). This
low-energy behavior can also be deduced from the behavior
of σb close to threshold shown in the zoom of Fig. 3, and in
particular from the fact that when the total energy goes to zero,
we have that 1 − |S11|2 ∝ k4

3 ∝ E2.
The recombination rate at threshold can be defined as K3 =

α(h̄a4/m). In Ref. [6], Petrov derived a log-periodic function
for α given in Eq. (3), whose simplified version is given by
Eq. (4). In order to use this formula to describe our numerical
results, which are obtained using finite-range potentials, we
introduce the following modification in the definition of K3:

K3 = 128π2(4π − 3
√

3)

sinh2(πs0) + cosh2(πs0) cot2[s0 ln(κ∗a + 
+) + γ ]

× h̄a4
B

m
, (21)

with the simplified form

K3 ≈ 67.1 sin2[s0 ln(κ∗a + 
+) + γ ]
(
h̄a4

B/m
)
, (22)

where, as in the effective-range function, we have replaced a

by aB and we have introduced the shift 
+ in the variable κ∗a.
Our results are shown in Fig. 5 as circles (TBG potential)

and squares (TBG + H3B potential). The dashed line repre-
sents the universal function of Eq. (3) with the value γ = 1.16
from Ref. [3]. It is interesting to see that the calculated points
organize in a curve shifted with respect to the universal curve.
The solid line represents Eq. (21), with the same value of γ

and 
+ � 6 × 10−2. By equating the argument of the sine to
zero, we can extract a1

+, which is the value of a at which the
recombination rate has a minimum. We obtain the relation

κ∗a1
+ = 0.31575 − 
+, (23)
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FIG. 5. (Color online) The recombination rate K3 at threshold
for different values of the product κ∗a. The red circles are the results
using the TBG potential, whereas the green squares are the results
using the TBG + H3B potential. The points have been fitted with
Eq. (21), obtaining 
+ � 6 × 10−2.

which, in our case, results in a1
+ ≈ 121a0 and a1

+ ≈ 135a0

for the TBG and TBG + H3B potentials, respectively. With
the values a1

− ≈ −752a0 and a1
− ≈ −975a0 for the TBG and

TBG + H3B potentials, respectively, given in Ref. [17], we
obtain a1

−/a1
+ ≈ −6.3 and a1

−/a1
+ ≈ −7.2 to be compared to

the theoretical prediction of −4.9. Moreover, defining 
+ =
κ∗r+ and dividing the above relation by κ∗, we can write r+ =
a1

+,zr − a1
+, where we have introduced the universal zero-range

scattering length a1
+,zr = 0.31575/κ∗. In the present case, we

obtain r+ ≈ 29a0. As in the case of atom-dimer scattering,
we can interpret the shift, in units of κ−1

∗ , as the difference
between the zero-range and the finite-range predictions for
a+. Moreover, the relation applied above to the n = 1 branch
can be extended to the other branches.
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FIG. 6. (Color online) The recombination rate K3 at threshold
as a function of E1

3/E2. The red circles are the results using
the TBG potential, whereas the green squares are the results using the
TBG + H3B potential. The dashed line corresponds to the zero-range
theory, while the solid line is the translation of the zero-range curve.

TABLE I. Selected experimental results of the indicated experi-
ments and selected ratios compared to the results of the present work
(using the TBG + H3B potential).

7Li [13] 7Li [14] 39K [11] 133Cs [12] Present work

�vdW(a0) 32.5 32.5 64.5 101.0 5.1

a0
−(a0) −241(8) −280(12) −690(40) −872(22) −48.1

a1
−(a0) −975

a1
∗(a0) 426(20) 196(4) 930(40) 367(13) 16.0

a0
+(a0) 88(4) 224(7) 210

a1
+(a0) 1402(100) 1130(120) 5650(900) 135

a1
∗/a

0
− −1.77 −0.7 −1.35 −0.42 −0.32

a0
−/a0

+ −2.7 −3.08 −4.2 −7.2
a0

−/a1
+ −0.17 −0.25 −0.12 −0.35

a0
−/�vdW −7.4 −8.6 −10.7 −8.6 −9.4

r∗/�vdW −5.5 2.9 −3.4 5.3 4.1
r+/�vdW −9.0 4.9 −38.5 <0 6.2

Finally, in Fig. 6, we report our results in the form of a
Phillips plot, as has usually been done in the literature to study
the correlation between different three-body observables (see,
for instance, Refs. [3,8,33]). In addition to our numerical data,
i.e., circles for TBG potential and squares for TBG + H3B
potential, we report the zero-range calculation without (dashed
line) and with (solid line) translation. We observe that the
translated curve fits quite well to the numerical data. In fact,
Fig. 6 can be understood as the combination of Figs. 1 (lower
panel) and 5, where the parameter κ∗a has been eliminated.
We have shown that the finite-range effects manifest as a
translation (the shifts) in the parameter κ∗a; see, for instance,
Eqs. (9), (11), (12), (21), and (22). Now, the smallness of
the shifts justifies the fact that the curve resulting from the
elimination of the parameter κ∗a is itself a translated curve,
at least at the first order. If the shifts 
1 and 
+ were the
same, then the numerical calculations would had fallen over
the zero-range curve without translation. This has been, for
instance, demonstrated in Ref. [8] in the case of the atom-dimer
scattering length as a function of the excited three-body energy
(cf. Fig. 2 of Ref. [8]).

C. Comparison to the experimental results

In the following, we compare our numerical results using
the TBG + H3B to selected results given in the literature
by different groups. We concentrate on the results given
for a−, a∗, and a+ extracted from resonances observed in
trapped ultracold atoms. The value of a− is extracted from a
maximum in the recombination rate in the negative sector of
a, whereas a∗ corresponds to a maximum in an atom-dimer
resonance, and a+ corresponds to a recombination minimum
in the positive sector of a. In Table I, we collect selected
experimental results of these quantities to be compared to the
results obtained using the TBG + H3B potential given in the
last column. As the numerical results, the measured ratios
do not completely agree with the zero-range universal theory.
This disagreement can be traced back to the shift introduced
in the zero-range theory produced by the finite-range nature
of the potential. This shift, which is not universal, produces
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differences between the different atomic species. However,
in all cases, the ratio a0

−/�vdW ≈ −9, where �vdW is the
natural-atomic length given by the van der Waals (vdW) part of
atomic potentials, introduces some common behavior, as was
recently justified [34,35]. Motivated by this fact, we extract the
values of r∗ and r+ from the measured experiments. To this end,
we can define κ∗ = (22.7)−11.56/|a0

−| from the experimental
value of a0

− to determine a1
∗,zr and a1

+,zr and then calculate
the two lengths, which, using Eqs. (10) and (23), can be
expressed as

r∗ = 1.032 |a0
−| − a1

∗,
(24)

r+ = 4.605 |a0
−| − a1

+.

The results in units of �vdW are given in the last two rows of the
table. As general trends, we can observe that the absolute value
of the two lengths is of the order of 5 �vdW (here, potassium
is the exception with a rather bigger value of r+) and |r+| is
slightly bigger than |r∗|, but the values can be both positives
and negatives. The results of the present work agree in order
of magnitude with the experimental data, while the signs of
both r+ and r∗ are probably related to the details of the specific
Feshbach resonances. In the presented work, the resonance has
been explored by changing the strength of the potential [see
Eq. (5)], which is a way to simulate a broad resonance but not
a narrow one, and the values of r+ and r∗ that we obtain are
positives.

Though this analysis is not conclusive, the results show
that the shifted formulas can be adapted to describe the
experimental results after the determination of r∗ and r+. Even
if several efforts have been produced to include finite-range
corrections in the interpretation of experimental data [36–41],
our results suggest that new experimental as well as theoretical
efforts are in order to clarify these kinds of corrections.

D. The nucleon-deuteron case

To test the universal description of the recombination rate
encoded in the threshold behavior of the S matrix, we study a
system which differs by an order of magnitude on length and
energy scales with respect to three-helium atoms. In particular,
we shall consider the case of neutron-deuteron (n-d) scattering.

An initial analysis for energies below the deuteron breakup
threshold has been done in Ref. [8], where it has been shown
that the universal formula of Eq. (12) describes this process
quantitatively with κ∗a + 
∗ ≈ 0.578 and a ≈ 4.07 fm. These
values have been estimated from the pole energy of Ep =
−160 keV and the doublet n-d scattering length given in
Ref. [42]. In this reference, calculations of n-d scattering have
been done using the s-wave spin-dependent potential of the
Malfliet and Tjon (MT) I-III model defined as

Vt (r) = 1

r
(−626.885e−1.55r + 1438.72e−3.11r ),

(25)

Vs(r) = 1

r
(−513.968e−1.55r + 1438.72e−3.11r ),

where s and t are the singlet and triplet spin states, respectively,
r is given in fm, and the potential is given in MeV. With
h̄2/m = 41.47 MeV fm2, the triplet potential leads to a
binding energy for the deuteron of E2 = 2.2307 MeV. The

10-5 10-4 10-3 10-2 10-1 100 101

E (MeV)

10-52

10-51

10-50

10-49

10-48

K
3 (c

m
6 /s

)

10-5 10-4 10-3 10-2 10-1 100 101

E (MeV)

10-25
10-24
10-23
10-22
10-21
10-20
10-19
10-18
10-17
10-16
10-15

D
3 (c

m
3 /s

)

C × E2

FIG. 7. (Color online) The recombination rate K3 and the disso-
ciation rate D3 for the 1/2+ state in the nucleon-deuteron system as
a function of the energy.

predictions for the singlet and triplet scattering lengths are
as = −23.583 fm and at = 5.513 fm, respectively, which is
very close to the experimental results. The scattering lengths
are substantially bigger than the effective range of the system,
rs > 2 fm, allowing an analysis in terms of the universal
formulas.

Using the potentials above and the procedure described in
[23], we have calculated the corresponding recombination and
the dissociation rates, which are shown in Fig. 7 as a function
of the three-body energy E. The figure shows the J = 1/2+
state, which is the only one having a Km = 0 contribution,
being then the most important one at low energies. When the
threshold is approached (E → 0), the rates have the same
behavior as in the atomic case, i.e., K3 goes to a constant and
D3 goes to zero as E2 (as shown by the dashed line in the
right part of the figure). At threshold, we obtain K3 = 9.85 ×
10−49 cm6/s.

It is possible to analyze the behavior of K3 at threshold
in the context of the universal function of Eq. (21). However,
it should be noticed that we cannot simply replace the value
of the triplet scattering length, since both channels, i.e., the
spin triplet and the spin singlet, contribute to the process. To
determine the value of the scattering length to be used, let
us have a look into the J = 1/2+ scattering wave function
�nd, which is usually expanded in terms of a complete set of
adiabatic functions as [23]

�nd(ρ,�) = 1

ρ5/2

∞∑

n=1

fn(ρ)�n(ρ,�), (26)

where ρ,� are the hyperradial and hyperspherical coordinates
and the �n(ρ,�) functions are, in fact, the eigenfunctions of
the angular part of the Schrödinger (or Faddeev) equations.
The angular eigenfunctions are typically expanded in terms of
the hyperspherical harmonics, such that for our case with total
angular momentum L = 0, �n(ρ,�) is written as

�n(ρ,�) =
∑

K

[CK,0(ρ)YK (�)|sx = 0〉

+CK,1(ρ)YK (�)|sx = 1〉], (27)

where YK are HH functions, CK,sx
(ρ) are the coefficients in the

expansion, and we have made explicit the contributions from
the possible spin states sx = 0,1 of two nucleons, which, after
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FIG. 8. (Color online) The coefficients of the scattering wave
function as a function of the hyperradius ρ. The picture show the
Jacobi set of coordinates used, whereas the shadow box indicates the
two coefficients surviving at long distances.

coupled to the spin of the third nucleon, give the total angular
momentum of 1/2.

The n = 1 term describes asymptotically the elastic channel
and �1(ρ,�) is proportional to the deuteron wave function.
The infinitely many remaining adiabatic channels describe
the breakup process [23]. Among them, the only one that
asymptotically contains contributions from hyperspherical
harmonics with grand-angular momentum K = 0 is the lowest
adiabatic breakup channel (the n = 2 term). This is the channel
responsible for the behavior of the reaction rates at threshold.

In Fig. 8, the coefficients of the �2(ρ,�) wave function are
shown as a function of the hyperradius. All of the coefficients
with K > 0 go to zero as ρ → ∞, but for K = 0, the
two coefficients C0,0(ρ) and C0,1(ρ) go to 1/2 and

√
3/2,

respectively. In the figure, the Jacobi coordinates have been
depicted indicating, by x, the n-p relative distance and, by
y, the relative distance of the third nucleon to the n-p center
of mass, so sx = 0,1 is the n-p spin. The shadow box shows
explicitly the two surviving terms when ρ increases.

This analysis implies that K3 receives contribution from
the singlet and triplet channel properly weighted. Therefore,
in the universal formula, the scattering length a has to be
considered as an effective scattering length a = 12.68 fm,
obtained from the average a2 = (3a2

t + a2
s )/4. Moreover, the

value of aB results in 12.37 fm if, in the average, at is replaced
by h̄/

√
mE2. With the values for a, aB and the product κ∗a +


+ ≈ 1.8 (obtained from the n-d value of 0.578 multiplied to
the ratio of a/at ), we obtain from Eq. (21) the recombination
rate value of K3 = 9.5 × 10−49 cm6/s, which is very close to
the computed value. This qualitative analysis can be used as
a starting point in the spin analysis of the universal aspects of
the recombination rate in light nuclear systems.

IV. CONCLUSIONS

In the present paper, we have investigated atom-dimer
scattering above the breakup threshold using a set of Gaussian
potentials constructed to reproduce the low-energy atom-atom

system. We have introduced a three-body force in order to
reproduce the trimer binding energies given by the LM2M2
potential multiplied by a constant λ varied from λ ≈ 0.974 to
λ ≈ 1.1 in order to cover a large part of the (a−1,κ) plane.
We have studied the total elastic and the total breakup cross
sections, as well as the recombination and dissociation rates,
K3 and D3, which are directly related to the latter. We have
paid special attention to the behavior of the system close to
threshold, and we have investigated the universal behavior of
K3 for different values of the two-body scattering length a. Our
aim here was to analyze the differences between the universal
zero-range theory which, for K3, are given by Eq. (3), and more
realistic finite-range calculations. This study started already in
Ref. [8], where these kinds of differences have been studied
for the first excited level of the three-atom system and in the
effective-range function. In that reference, it was found that
finite-range results organize in a curve shifted with respect to
the zero-range theory. Here we have extended the analysis to
the ground-state energy and to the recombination rate. Our
main results are given in Fig. 5, where we can observe that the
computed values for K3 lie on a shifted curve in the variable
κ∗a. Additional range corrections come from the replacement
of a by aB in the h̄a4/m factor. This type of correction has
been already introduced in the study of aAD and k cot δ, as well
as in the binding energies E0

3 and E1
3 which have been divided

by E2 instead of h̄2/ma2, as indicated by the zero-range
theory.

The fact that the finite-range results lie on a shifted curve in
the variable κ∗a for the binding energies and the low-energy
scattering quantities strongly supports this particular type
of correction. Following this observation, we have proposed
Eqs. (11), (12), and (21) as modifications to the zero-range
universal formulas where we have introduced the shifts 
∗, 
e,
and 
+. From the calculations, we find that the shift of the
first excited 
1 ≈ 
∗ ≈ 
e, whereas 
+ is slightly larger. We
have argued that in the range of a studied, the three-boson
system has only one excited state, making the shift of the
same order. In the case of the recombination rate, one more
channel is open and, in terms of adiabatic potentials, at
least two channels have to be considered (see, for example,
Sec. 6 of Ref. [3]). As a consequence, a larger amount of
potential energy appears, increasing the shift. This intuitive
argument can be stated formally; work along this line is in
progress.

Most of the work presented here has been focused on
the necessity of adapting the universal formulas obtained
in a zero-range theory to the physical case of finite-range
interactions. Accordingly, the modifications introduced in
the three-helium system model similar modifications to be
considered in the analysis of the experiments on Efimov
resonance in ultracold gases. The analysis of the experimental
results given in Sec. III C was directed to see if there is
experimental evidence of the lengths r∗ and r+ introduced
in the parametrization of the shift. We have observed some
common behavior of the different species when the lengths are
given in units of �vdW. This fact encourages this kind of analysis
and suggests that more theoretical as well experimental efforts
can be made in this direction.

In the last part of this study, we have focused on the
study of nucleon-deuteron scattering closely above the breakup

032701-8



RECOMBINATION RATES FROM POTENTIAL MODELS . . . PHYSICAL REVIEW A 88, 032701 (2013)

threshold. Using the spin-dependent MT I-III potential, we
have shown that the K3 and D3 rates have a behavior close
to threshold, similar to the one observed in the three-atom
systems. We have applied the universal formula to this system
using a spin average scattering length and we have seen that it is
possible to describe the computed value of K3. This qualitative
analysis can be considered as a first step in the study of

universal aspects of nucleon-deuteron scattering considering
the full spin dependence of the system.
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Phys. Rev. C 51, 2356 (1995).

[29] A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 64, 024002
(2001).

[30] A. Kievsky, S. Rosati, and M. Viviani, Phys. Rev. Lett. 82, 3759
(1999).

[31] H. Suno and B. D. Esry, Phys. Rev. A 78, 062701 (2008).
[32] B. D. Esry, C. H. Greene, and H. Suno, Phys. Rev. A 65, 010705

(2001).
[33] M. T. Yamashita, T. Frederico, L. Tomio, and A. Delfino, Phys.

Rev. A 68, 033406 (2003).
[34] J. Wang, J. P. D’Incao, B. D. Esry, and C. H. Greene, Phys. Rev.

Lett. 108, 263001 (2012).
[35] P. Naidon, S. Endo, and M. Ueda, arXiv:1208.3912.
[36] T. Frederico, L. Tomio, A. Delfino, and A. E. A. Amorim, Phys.

Rev. A 60, R9 (1999).
[37] P. Naidon, E. Hiyama, and M. Ueda, Phys. Rev. A 86, 012502

(2012).
[38] C. Ji, D. R. Phillips, and L. Platter, Europhys. Lett. 92, 13003

(2010).
[39] J. P. D’Incao, C. H. Greene, and B. D. Esry, J. Phys. B 42,

044016 (2009).
[40] M. Thøgersen, D. V. Fedorov, and A. S. Jensen, Phys. Rev. A

78, 020501 (2008).
[41] L. Platter, C. Ji, and D. R. Phillips, Phys. Rev. A 79, 022702

(2009).
[42] C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.

Rev. C 39, 1261 (1989).

032701-9

http://dx.doi.org/10.1016/0370-2693(70)90349-7
http://dx.doi.org/10.1016/j.physrep.2006.03.001
http://dx.doi.org/10.1103/PhysRevLett.83.1566
http://dx.doi.org/10.1103/PhysRevLett.83.1751
http://dx.doi.org/10.1103/PhysRevLett.83.1751
http://dx.doi.org/10.1063/1.460139
http://dx.doi.org/10.1103/PhysRevA.87.052719
http://dx.doi.org/10.1103/PhysRevA.87.052719
http://dx.doi.org/10.1103/PhysRevC.87.014002
http://dx.doi.org/10.1016/j.physletb.2008.10.030
http://dx.doi.org/10.1016/j.physletb.2008.10.030
http://dx.doi.org/10.1038/nphys1334
http://dx.doi.org/10.1103/PhysRevLett.111.053202
http://dx.doi.org/10.1007/s00601-011-0260-7
http://arXiv.org/abs/arXiv:1302.0281
http://dx.doi.org/10.1103/PhysRevLett.108.210406
http://dx.doi.org/10.1103/PhysRevLett.108.210406
http://dx.doi.org/10.1103/PhysRevA.54.394
http://dx.doi.org/10.1103/PhysRevA.54.394
http://dx.doi.org/10.1103/PhysRevA.64.042514
http://dx.doi.org/10.1103/PhysRevA.86.042513
http://dx.doi.org/10.1103/PhysRevA.86.042513
http://dx.doi.org/10.1007/s00601-011-0226-9
http://dx.doi.org/10.1016/S0375-9474(98)00650-2
http://dx.doi.org/10.1016/S0375-9474(98)00650-2
http://dx.doi.org/10.1016/S0375-9474(97)81832-5
http://dx.doi.org/10.1007/s00601-010-0151-3
http://dx.doi.org/10.1103/PhysRevA.83.022705
http://dx.doi.org/10.1103/PhysRevA.86.052709
http://dx.doi.org/10.1016/S0370-1573(00)00107-1
http://dx.doi.org/10.1016/S0370-1573(00)00107-1
http://dx.doi.org/10.1103/PhysRevLett.103.090402
http://dx.doi.org/10.1103/PhysRevC.86.044330
http://dx.doi.org/10.1103/PhysRevC.42.1838
http://dx.doi.org/10.1103/PhysRevC.51.2356
http://dx.doi.org/10.1103/PhysRevC.64.024002
http://dx.doi.org/10.1103/PhysRevC.64.024002
http://dx.doi.org/10.1103/PhysRevLett.82.3759
http://dx.doi.org/10.1103/PhysRevLett.82.3759
http://dx.doi.org/10.1103/PhysRevA.78.062701
http://dx.doi.org/10.1103/PhysRevA.65.010705
http://dx.doi.org/10.1103/PhysRevA.65.010705
http://dx.doi.org/10.1103/PhysRevA.68.033406
http://dx.doi.org/10.1103/PhysRevA.68.033406
http://dx.doi.org/10.1103/PhysRevLett.108.263001
http://dx.doi.org/10.1103/PhysRevLett.108.263001
http://arXiv.org/abs/arXiv:1208.3912
http://dx.doi.org/10.1103/PhysRevA.60.R9
http://dx.doi.org/10.1103/PhysRevA.60.R9
http://dx.doi.org/10.1103/PhysRevA.86.012502
http://dx.doi.org/10.1103/PhysRevA.86.012502
http://dx.doi.org/10.1209/0295-5075/92/13003
http://dx.doi.org/10.1209/0295-5075/92/13003
http://dx.doi.org/10.1088/0953-4075/42/4/044016
http://dx.doi.org/10.1088/0953-4075/42/4/044016
http://dx.doi.org/10.1103/PhysRevA.78.020501
http://dx.doi.org/10.1103/PhysRevA.78.020501
http://dx.doi.org/10.1103/PhysRevA.79.022702
http://dx.doi.org/10.1103/PhysRevA.79.022702
http://dx.doi.org/10.1103/PhysRevC.39.1261
http://dx.doi.org/10.1103/PhysRevC.39.1261



