107 research outputs found

    “What if There's Something Wrong with Her?”‐How Biomedical Technologies Contribute to Epistemic Injustice in Healthcare

    Get PDF
    While there is a steadily growing literature on epistemic injustice in healthcare, there are few discussions of the role that biomedical technologies play in harming patients in their capacity as knowers. Through an analysis of newborn and pediatric genetic and genomic sequencing technologies (GSTs), I argue that biomedical technologies can lead to epistemic injustice through two primary pathways: epistemic capture and value partitioning. I close by discussing the larger ethical and political context of critical analyses of GSTs and their broader implications for just and equitable healthcare delivery

    The most luminous, merger-free AGN show only marginal correlation with bar presence

    Get PDF
    The role of large-scale bars in the fuelling of active galactic nuclei (AGN) is still debated, even as evidence mounts that black hole growth in the absence of galaxy mergers cumulatively dominated and may substantially influence disc (i.e., merger-free) galaxy evolution. We investigate whether large-scale galactic bars are a good candidate for merger-free AGN fuelling. Specifically, we combine slit spectroscopy and Hubble Space Telescope imagery to characterise star formation rates (SFRs) and stellar masses of the unambiguously disc-dominated host galaxies of a sample of luminous, Type-1 AGN with 0.02 < z 0.024. After carefully correcting for AGN signal, we find no clear difference in SFR between AGN hosts and a stellar mass-matched sample of galaxies lacking an AGN (0.013 < z < 0.19), although this could be due to a small sample size (n_AGN = 34). We correct for SFR and stellar mass to minimise selection biases, and compare the bar fraction in the two samples. We find that AGN are marginally (1.7σ\sigma) more likely to host a bar than inactive galaxies, with AGN hosts having a bar fraction, fbar = 0.59^{+0.08}_{-0.09} and inactive galaxies having a bar fraction fbar = 0.44^{+0.08}_{-0.09}. However, we find no further differences between SFR- and mass-matched AGN and inactive samples. While bars could potentially trigger AGN activity, they appear to have no further, unique effect on a galaxy's stellar mass or SFR.Comment: 15 pages (9 figures). Accepted for publication in MNRA

    The intrinsic predictability of ecological time series and its potential to guide forecasting

    Full text link
    Successfully predicting the future states of systems that are complex, stochastic, and potentially chaotic is a major challenge. Model forecasting error (FE) is the usual measure of success; however model predictions provide no insights into the potential for improvement. In short, the realized predictability of a specific model is uninformative about whether the system is inherently predictable or whether the chosen model is a poor match for the system and our observations thereof. Ideally, model proficiency would be judged with respect to the systems’ intrinsic predictability, the highest achievable predictability given the degree to which system dynamics are the result of deterministic vs. stochastic processes. Intrinsic predictability may be quantified with permutation entropy (PE), a model‐free, information‐theoretic measure of the complexity of a time series. By means of simulations, we show that a correlation exists between estimated PE and FE and show how stochasticity, process error, and chaotic dynamics affect the relationship. This relationship is verified for a data set of 461 empirical ecological time series. We show how deviations from the expected PE–FE relationship are related to covariates of data quality and the nonlinearity of ecological dynamics. These results demonstrate a theoretically grounded basis for a model‐free evaluation of a system's intrinsic predictability. Identifying the gap between the intrinsic and realized predictability of time series will enable researchers to understand whether forecasting proficiency is limited by the quality and quantity of their data or the ability of the chosen forecasting model to explain the data. Intrinsic predictability also provides a model‐free baseline of forecasting proficiency against which modeling efforts can be evaluated

    Crimmigration and Refugees: Bridging Visas, Criminal Cancellations and ‘Living in the Community’ as Punishment and Deterrence

    Full text link
    Australia’s status as the only state with a policy of mandatory indefinite detention of all unlawful non-citizens, including asylum seekers, who are within Australian territory is a fact that is both well-known and frequently cited. From its inception, mandatory immigration detention was touted as ‘the method of deterrence for those seeking asylum onshore’ and since then ‘mandatory detention has been at the forefront of a deterrence as control and control as deterrence discourse’2. The imagined subjects of deterrence are frequently asylum seekers presented as ‘bogus’ or as economic migrants, and the sites for control are Australia’s ‘immigration program’ and borders. While these dual factors have animated the implementation and continuation of the policy for over 25 years, the contemporary practice and enforcement of detention in Australia presents a much more complex picture

    The most luminous, merger-free AGN show only marginal correlation with bar presence

    Get PDF
    The role of large-scale bars in the fuelling of active galactic nuclei (AGN) is still debated, even as evidence mounts that black hole growth in the absence of galaxy mergers cumulatively dominates and may substantially influence disc (i.e., merger-free) galaxy evolution. We investigate whether large-scale galactic bars are a good candidate for merger-free AGN fuelling. Specifically, we combine slit spectroscopy and Hubble Space Telescope imagery to characterise star formation rates (SFRs) and stellar masses of the unambiguously disc-dominated host galaxies of a sample of luminous, Type-1 AGN with 0.02 < < 0.24. After carefully correcting for AGN signal, we find no clear difference in SFR between AGN hosts and a stellar mass-matched sample of galaxies lacking an AGN (0.013 < < 0.19), although this could be due to small sample size (AGN = 34). We correct for SFR and stellar mass to minimise selection biases, and compare the bar fraction in the two samples. We find that AGN are marginally (∌ 1.7σ) more likely to host a bar than inactive galaxies, with AGN hosts having a bar fraction, bar = 0.59+0.08 −0.09 and inactive galaxies having a bar fraction, bar = 0.44+0.08 −0.09. However, we find no further differences between SFR- and mass-matched AGN and inactive samples. While bars could potentially trigger AGN activity, they appear to have no further, unique effect on a galaxy’s stellar mass or SF

    Congenital microcephaly: Case definition & guidelines for data collection, analysis, and presentation of safety data after maternal immunisation.

    Get PDF
    Need for developing case definitions and guidelines for data collection, analysis, and presentation for congenital microcephaly as an adverse event following maternal immunisation Congenital microcephaly, also referred to as primary microcephaly due to its presence in utero or at birth, is a descriptive term for a structural defect in which a fetus or infant’s head (cranium) circumference is smaller than expected when compared to other fetuses or infants of the same gestational age, sex and ethnic background
    • 

    corecore