14 research outputs found

    Transfer of efficient anti-melanocyte T cells from vitiligo donors to melanoma patients as a novel immunotherapeutical strategy

    Get PDF
    BACKGROUND: Vitiligo is a relatively common progressive depigmentary condition that is believed to be due to the autoimmune-mediated loss of epidermal melanocytes. High frequencies of self-reactive T lymphocytes directed toward melanocyte differentiation antigens are found in vitiligo patients and might be directly responsible for the pathogenesis of the disease. An interesting aspect of vitiligo is its relation to melanoma: cytotoxic T lymphocytes directed to self antigens shared by normal melanocytes and melanoma cells are found in both conditions, but the resulting immune reactions are completely different. From this standpoint, the selective destruction of pigment cells that occurs in cases of vitiligo is the therapeutic goal sought in melanoma research. PRESENTATION OF THE HYPOTHESIS: Our working hypothesis is that vitiligo patients might represent a unique source of therapeutic cells to be used in allo-transfer for HLA-matched melanoma patients. The adoptive transfer of ex-vivo generated autologous tumor-specific T cells is a therapy that has met with only limited success, essentially because of inability to isolate therapeutically valuable T cells from the majority of tumor patients. Ideally, model systems where strong and efficient responses against the same (tumor) antigens are achieved would represent a better source of therapeutic cells. We believe it is possible to identify one such model in the melanoma-vitiligo dichotomy: T lymphocytes specific for different melanocyte differentiation antigens are found in vitiligo and represent the effective anti-melanocyte reactivity that is often ineffective in melanoma. TESTING THE HYPOTHESIS: Melanocyte-specific T cell clones can be isolated from the peripheral blood of vitiligo patients and tested for their capacity to efficiently expand in vitro without loosing their cytotoxic activity and to migrate to the skin. Cytotoxicity against melanoma patients' non-tumor cells can also be tested. In addition, it would be interesting to attempt an in vivo animal model. If the results obtained from these validation steps will be satisfactory, it might be possible to plan the clinical grade preparation of relevant clones for transfer. IMPLICATIONS OF THE HYPOTHESIS: When translated into a clinical trial, the possibility of in vitro selecting few effective tumor-specific T cell clones for infusion, inherent with this approach, could enhance the therapeutic graft-versus-tumor effect while possibly decreasing the risk of graft-versus-host disease

    Religious Pilgrimage: Experiencing Places, Objects and Events

    Get PDF
    This article explores the concept of the Eventization of faith (Pfadenhauer, 2010) through application of three case studies, to identify learning that might be applied to a traditional pilgrimage destination, such as Jerusalem. This Holy City is held sacred by the three Abrahamic religions, and faith-based tourism is central both to the Holy Land and to the city of Jerusalem (Leppakari & Griffin, 2017). This paper builds on research that identifies processes and models that provide insight into the developing concept of the eventization of faith. The work examines outcomes from three different perspectives: - The impact of traditional church-led pilgrimages to places in the Holy Land, on participants and their local church communities. - The successful eventization of the Lindisfarne Gospels as part of their release to Durham University in 2013, and the impact on local historical, cultural and religious identity and heritage (Dowson, 2019). - The shared pilgrimage experience of thousands of Christian women participating in the annual Cherish Conference in Leeds, Yorkshire, held in a secular event venue (Dowson, 2016). In analysing these three case study examples, this paper aims to identify factors that might enhance our understanding of the concept of eventization of faith. Utilising face to face interviews and online survey results, the research focuses on the aspects of community, identity and authenticity. Events enable shared experiences in a faith context (Lee et al., 2015), and so this research develops a model that captures and expresses approaches that might encourage pilgrimages to traditional destinations, through the medium of events, adding insight into the development of the academic concept of Eventization of Faith

    Terrorism, Tourism and Religious Travellers

    Get PDF
    Curiously, while tourism is cited as the world’s largest industry (UNWTO, 2016), it is simultaneously a fragile industry that is highly vulnerable to the impact of the ongoing threat of terrorism. Internationally, terrorism influences the tourist mind-set in a number of ways, in particular it creates fear for travellers and causes economic and social impacts to change the behaviour of people and dissuade them from visiting certain places in the world. Thus, the impact of terrorism has caused tremendous damage to the travel industry. A number of countries which previously depended quite heavily on the tourism industry are suffering in terms of economic development. This paper discusses critical issues related to terrorism, that are faced by travellers to religious and sacred sites. The paper will illustrate the impact of recent terrorism phenomena upon travellers in two ways: first, the potential personal hazards to travellers caused by terrorist incidents; second, the impacts caused by stringent anti-terrorism laws and security measures, to travellers while they are in transit

    A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres.

    Get PDF
    Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism

    Amyotrophic Lateral Sclerosis Multiprotein Biomarkers in Peripheral Blood Mononuclear Cells

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments.We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC), a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%), and from patients with neurological disorders that may resemble ALS (91%), between two levels of disease severity (90%), and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing.Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms

    DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective

    No full text
    RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors

    Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors

    No full text
    Efficacy of currently approved anti-HIV drugs is hampered by mutations of the viral enzymes, leading invariably to drug resistance and chemotherapy failure. Recent data suggest that cellular co-factors also represent useful targets for anti-HIV therapy. Here we describe the identification of the first small molecules specifically designed to inhibit the HIV-1 replication by targeting the RNA binding site of the human DEAD-Box RNA helicase DDX3. Optimization of a easily synthetically accessible hit (1) identified by application of a high-throughput docking approach afforded the promising compounds 6 and 8 which proved to inhibit both the helicase and ATPase activity of DDX3 and to reduce the viral load of peripheral blood mononuclear cells (PBMC) infected with HIV-1

    Specific Cytotoxic T Lymphocyte Responses Against Melan-A/MART1, Tyrosinase and Gp100 in Vitiligo by the Use of Major Histocompatibility Complex/Peptide Tetramers: the Role of Cellular Immunity in the Etiopathogenesis of Vitiligo

    Get PDF
    Vitiligo is a common skin disease characterized by the presence of well circumscribed, depigmented, milky white macules devoid of identifiable melanocytes. Although the detection of circulating anti-melanocytic antibodies and of infiltrating lymphocytes at the margin of lesions supports the view that vitiligo is an autoimmune disorder, its etiology remains unknown. In particular, it is still a matter of debate whether the primary pathogenic role is exerted by humoral or cellular abnormal immune responses. In this study, the presence of specific cytotoxic T lymphocyte responses against the melanocyte differentiation antigens Melan-A/MART1, tyrosinase, and gp100 in vitiligo patients have been investigated by the use of major histocompatibility complex/peptide tetramers. High frequencies of circulating melanocyte-specific CD8+ T cells were found in all vitiligo patients analyzed. These cells exerted anti-melanocytic cytotoxic activity in vitro and expressed skin-homing capacity. In one patient melanocyte-specific cells were characterized by an exceptionally high avidity for their peptide/major histocompatibility complex ligand. These findings strongly suggest a role for cellular immunity in the pathogenesis of vitiligo and impact on the common mechanisms of self tolerance
    corecore