38 research outputs found

    Three methods to detect the predicted DDˉ scalar meson X(3700)

    Get PDF
    In analogy to the f(0)(500), which appears as a pi pi resonance in chiral unitary theory, and the f(0)(980), which appears as a quasibound K (K) over bar state, the extension of this approach to the charm sector also predicts a quasibound D (D) over bar state with mass around 3720 MeV, named as X(3700), for which some experimental support is seen in the e(+)e(-) -> J/psi D (D) over bar reaction close to the D (D) over bar threshold. In the present work we propose three different experiments to observe it as a clear peak. The first one is the radiative decay of the psi(3770), psi(3770) -> gamma X(3700) -> gamma eta eta'. The second one proposes the analogous reaction psi(4040) -> gamma X(3700) -> gamma eta eta' and the third reaction is the e(+)e(-) -> J/psi X(3700) -> J/psi eta eta'. Neat peaks are predicted for all the reactions and the calculated rates are found within measurable range in present facilities

    Charm and hidden charm scalar mesons in the nuclear medium

    Get PDF
    We study the renormalization of the properties of low lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with negligible width at zero density, the width becomes about 100 MeV at normal nuclear matter density, while in the case of the X(3700) the width becomes as large as 200 MeV. We discuss the origin of this new width and trace it to reactions occurring in the nucleus, while offering a guideline for future experiments testing these changes. We also show how those medium modifications will bring valuable information on the nature of the scalar resonances and the mechanisms of the interaction of D mesons with nucleons and nuclei

    Magnetic moments of the low-lying JP=1/2J^P=\,1/2^-, 3/23/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/21/2^-, 3/23/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/21/2^-, Λ(1520)\Lambda(1520) 3/23/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization

    The DNDN, πΣc\pi \Sigma_c interaction in finite volume and the Λc(2595)\Lambda_c(2595) resonance

    Full text link
    In this work the interaction of the coupled channels DNDN and πΣc\pi \Sigma_c in an SU(4) extrapolation of the chiral unitary theory, where the Λc(2595)\Lambda_c(2595) resonance appears as dynamically generated from that interaction, is extended to produce results in finite volume. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the phase shifts in the infinite volume from the lattice results is solved. We observe that it is possible to obtain accurate πΣc\pi \Sigma_c phase shifts and the position of the Λc(2595)\Lambda_c(2595) resonance, but it requires the explicit consideration of the two coupled channels. We also observe that some of the energy levels in the box are attached to the closed DNDN channel, such that their use to induce the πΣc\pi \Sigma_c phase shifts via L\"uscher's formula leads to incorrect results.Comment: 10 pages, 13 figures, accepted for publication in Eur. Phys. J.

    Reanalysis of lattice QCD spectra leading to the Ds0*(2317) and Ds1*(2460)

    Get PDF
    We perform a reanalysis of the energy levels obtained in a recent lattice QCD simulation, from where the existence of bound states of KD and KD* are induced and identified with the narrow D-s0*(2317) and D-s1*(2460) resonances. The reanalysis is done in terms of an auxiliary potential, employing a single-channel basis KD(*()), and a two-channel basis KD(*()), eta D-s(()*()). By means of an extended Luscher method we determine poles of the continuum t-matrix, bound by about 40 MeV with respect to the KD and KD* thresholds, which we identify with the D-s0*(2317) and D-s1*(2460) resonances. Using a sum rule that reformulates Weinberg compositeness condition we can determine that the state D-s0*(2317) contains a KD component in an amount of about 70%, while the state D-s1*(2460) contains a similar amount of KD*. We argue that the present lattice simulation results do not still allow us to determine which are the missing channels in the bound state wave functions and we discuss the necessary information that can lead to answer this question

    Effects of pseudoscalar-baryon channels in the dynamically generated vector-baryon resonances

    Get PDF
    We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled channels unitary approach, including also the pseudoscalar-baryon channels which couple to the same quantum numbers. We examine the scattering amplitudes and their poles, which can be associated to known JP=1/2,3/2J^P=1/2^-,3/2^- baryon resonances, and determine the role of the pseudoscalar-baryon channels, changing the width and eventually the mass of the resonances generated with only the basis of vector-baryon states

    Prediction of a Z(c)(4000) state and relationship with the claimed Z(c)(4025)

    Get PDF
    After discussing the OZI suppression of one light meson exchange in the interaction of with isospin I = 1 , we study the contribution of the two-pion exchange to the interaction and the exchange of heavy vectors, J/psi for diagonal transitions and D-* for transitions of to J/psi rho. We find these latter mechanisms to be weak, but enough to barely bind the system in J = 2 with a mass around 4000 MeV, while the effect of the two-pion exchange is a net attraction, though weaker than that from heavy-vector exchange. We discuss this state and try to relate it to the Z (c) (4025) state, above the threshold, claimed in an experiment at BES from an enhancement of the distribution close to threshold. Together with the results from a recent reanalysis of the BES experiment showing that it is compatible with a J = 2 state below threshold around 3990 MeV, we conclude that the BES experiment could show the existence of the state that we find in our approach

    Unitarized Chiral Perturbation Theory in a finite volume: scalar meson sector

    Get PDF
    We develop a scheme for the extraction of the properties of the scalar mesons f0(600), f0(980), and a0(980) from lattice QCD data. This scheme is based on a two-channel chiral unitary approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with a fixed error assigned, and show that the framework can be indeed used for an accurate determination of resonance pole positions in the multi-channel scattering.Comment: 15 pages, 17 figure

    Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry

    Get PDF
    Using a coupled-channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-baryon interaction with hidden beauty and obtain several new states of N around 11 GeV. We consider the basis of states eta (b) N, I'N, BI > (b) , BI pound (b) , B (*) I > (b) , B (*) I pound (b) , B (*) I pound (b) (*) and find four basic bound states which correspond to BI pound (b) , BI pound (b) (*) , B (*) I pound (b) and B (*) I pound (b) (*) , decaying mostly into eta (b) N and I'N and with a binding energy about 50-130 MeV with respect to the thresholds of the corresponding channel. All of them have isospin I = 1/2 , and we find no bound states or resonances in I = 3/2 . The BI pound (b) state appears in J = 1/2 , the BI pound (b) (*) in J = 3/2 , the B (*) I pound (b) appears nearly degenerate in J = 1/2 , 3/2 and the B (*) I pound (b) (*) appears nearly degenerate in J = 1/2 , 3/2, 5/2. These states have a width from 2-110 MeV, with conservative estimates of uncertainties, except for the one in J = 5/2 which has zero width since it cannot decay into any of the states of the basis chosen. We make generous estimates of the uncertainties and find that within very large margins these states appear bound
    corecore