1,724 research outputs found

    Possible signatures of mixed-parity superconductivity in doped polar SrTiO3 films

    Get PDF
    Superconductors that possess both broken spatial inversion symmetry and spin-orbit interactions exhibit a mix of spin singlet and triplet pairing. Here, we report on measurements of the superconducting properties of electron-doped, strained SrTiO3 films. These films have an enhanced superconducting transition temperature and were previously shown to undergo a transition to a polar phase prior to becoming superconducting. We show that some films show signatures of an unusual superconducting state, such as an in-plane critical field that is higher than both the paramagnetic and orbital pair breaking limits. Moreover, nonreciprocal transport, which reflects the ratio of odd versus even pairing interactions, is observed. Together, these characteristics indicate that these films provide a tunable platform for investigations of unconventional superconductivity

    A non-linear observer for unsteady three-dimensional flows

    Get PDF
    A method is proposed to estimate the velocity field of an unsteady flow using a limited number of flow measurements. The method is based on a non-linear low-dimensional model of the flow and on expanding the velocity field in terms of empirical basis functions. The main idea is to impose that the coefficients of the modal expansion of the velocity field give the best approximation to the available measurements and that at the same time they satisfy as close as possible the non-linear low-order model. The practical use may range from feedback flow control to monitoring of the flow in non-accessible regions. The proposed technique is applied to the flow around a confined square cylinder, both in two- and three-dimensional laminar flow regimes. Comparisons are provided. with existing linear and non-linear estimation techniques

    Application of the Cloude-Pottier decomposition to weather radar signatures

    Get PDF
    In this paper we apply the Cloude-Pottier decomposition to Weather Radar Signatures. First, we present the results of a simulation carried out at the Chemnitz University of Technology and give the expected H-α values for different rain intensities. A comparison with standard radarmeteorological variables is also given. Then, first ever images of Entropy and Anisotropy are presented for clouds and precipitation. Experimental Data are from the POLDIRAD Weather Facility in Oberpfaffenhofen, Germany

    Structural connectivity and functional properties of the macaque superior parietal lobule

    Get PDF
    Despite the consolidated belief that the macaque superior parietal lobule (SPL) is entirely occupied by Brodmann’s area 5, recent data show that macaque SPL also hosts a large cortical region with structural and functional features similar to that of Brodmann’s area 7. According to these data, the anterior part of SPL is occupied by a somatosensory-dominated cortical region that hosts three architectural and functional distinct regions (PE, PEci, PEip) and the caudal half of SPL by a bimodal somato-visual region that hosts four areas: PEc, MIP, PGm, V6A. To date, the most studied areas of SPL are PE, PEc, and V6A. PE is essentially a high-order somatomotor area, while PEc and V6A are bimodal somatomotor–visuomotor areas, the former with predominant somatosensory input and the latter with predominant visual input. The functional properties of these areas and their anatomical connectivity strongly suggest their involvement in the control of limb movements. PE is suggested to be involved in the preparation/execution of limb movements, in particular, the movements of the upper limb; PEc in the control of movements of both upper and lower limbs, as well as in their interaction with the visual environment; V6A in the control of reach-to-grasp movements performed with the upper limb. In humans, SPL is traditionally considered to have a different organization with respect to macaques. Here, we review several lines of evidence suggesting that this is not the case, showing a similar structure for human and non-human primate SPLs

    Mixing sensitivity to the inclination of the lateral walls in a T-mixer

    Get PDF
    One of the simplest geometries for micro-mixers has a T-shape, i.e., the two inlets join perpendicularly the mixing channel. The cross-sections of the channels are usually square/rectangular, as straight walls facilitate experimental and modeling analysis. On the contrary, this work investigates through Computational Fluid Dynamics the effect of a cross-section with lateral walls inclined of an angle α as such an inclination may stem from different microfabrication techniques. Considering water as operating fluid, the same mixing performance as square/rectangular cross-sections is obtained for inclinations α≤3°; this indicates the maximum admissible error on the perpendicularity of the walls in the manufacturing process. Above this value, the presence of inclined walls delays the onset of the engulfment regime at higher Reynolds numbers, and for α≥23°the mixing is hampered dramatically, as the flow is unable to break the mirror symmetry and enter in the engulfment regime. At low Reynolds numbers, the mixing is moderately improved for α≥10°, because the vortex regime presents a lower degree of symmetry than that of T-mixers with straight walls

    Unsteady flow regimes in arrow-shaped micro-mixers with different tilting angles

    Get PDF
    Two arrow-shaped micro-mixers, obtained from the classical T-shaped geometry by tilting downward the inlet channels, are considered herein. The two configurations, having different tilting angle values, have been chosen since they show significantly different flow topologies and mixing performances at low Reynolds numbers. In the present paper, we use both experimental flow visualizations and direct numerical simulations to shed light on the mixing behavior of the two configurations for larger Reynolds numbers, for which the mixers present unsteady periodic flows, although in laminar flow conditions. The tilting angle influences the flow dynamics also in the unsteady regimes and has a significant impact on mixing. The configuration characterized by the lower tilting angle, i.e., α = 10°, ensures a better global mixing performance than the one with the larger angle, i.e., α = 20°

    Covert Shift of Attention Modulates the Ongoing Neural Activity in a Reaching Area of the Macaque Dorsomedial Visual Stream

    Get PDF
    Background: Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control. Methodology/Principal Findings: We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons. Conclusions/Significance: This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with - and perhaps directly derived from - motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements

    Influence of Topological Edge States on the Properties of Al/Bi2Se3/Al Hybrid Josephson Devices

    Get PDF
    In superconductor-topological insulator-superconductor hybrid junctions, the barrier edge states are expected to be protected against backscattering, to generate unconventional proximity effects, and, possibly, to signal the presence of Majorana fermions. The standards of proximity modes for these types of structures have to be settled for a neat identification of possible new entities. Through a systematic and complete set of measurements of the Josephson properties we find evidence of ballistic transport in coplanar Al-Bi2Se3-Al junctions that we attribute to a coherent transport through the topological edge state. The shunting effect of the bulk only influences the normal transport. This behavior, which can be considered to some extent universal, is fairly independent of the specific features of superconducting electrodes. A comparative study of Shubnikov - de Haas oscillations and Scanning Tunneling Spectroscopy gave an experimental signature compatible with a two dimensional electron transport channel with a Dirac dispersion relation. A reduction of the size of the Bi2Se3 flakes to the nanoscale is an unavoidable step to drive Josephson junctions in the proper regime to detect possible distinctive features of Majorana fermions.Comment: 11 pages, 14 figure

    Effect of stratification on the mixing and reaction yield in a T-shaped micro-mixer

    Get PDF
    The effect of a small density difference, i.e., lower than 12%, between the two miscible liquid streams fed to a T-shaped junction is investigated experimentally and through numerical simulations. Micron-resolution particle image velocimetry (micro-PIV) experiments provided detailed support to the numerical analysis of how stratification influences flow features in different flow regimes. From dimensional analysis, we find that gravitational and inertial fluxes balance each other at a distance L=d/Ri from the confluence along the mixing channel, where d is the hydraulic diameter and Ri is the Richardson number. In general, at distances |y|≪L, the influence of gravity can be neglected, while at |y|≫L the two fluids are fully segregated; in particular, at the confluence, the flow field is the same as the one that we obtain assuming that the two inlet fluids are identical. Thus, in the segregated regime, the contact region separating the two fluids of the inlet streams remains vertical at distances |y|≪L along the mixing channel while it becomes progressively horizontal at |y|≈L. In the vortex regime as well, near the confluence the flow field presents a mirror symmetry, with a very small resulting degree of mixing; however, as we move down the mixing channel, when |y|>L, gravity becomes relevant, leading to a symmetry breaking that promotes convection and enhances mixing. When we further increase the Reynolds number, in the engulfment regime, the degree of mixing becomes much larger due to the mixing induced by the flow instability at the confluence and thus the successive stratification appears to have a small effect on the flow topology, with a degree of mixing that continues to grow very slowly in the mixing channel, similar to what happens in the case of identical inlet fluids. As expected, the onsets of the vortex and engulfment regimes occur at values of the Reynolds number Re that hardly depend on the density difference between the two inlet fluids, provided that Re is defined in terms of the fluid properties of a homogeneous fluid mixture. Finally, the reaction yield along the mixing channel is computed both from numerical and experimental data. In agreement with theoretical predictions, we found that the reaction yield depends on the Damköhler number and the kinetic constant, while it is independent of the density ratio, at least within the range of the investigated conditions

    Beam-based characterization of plasma density in a capillary-discharge waveguide

    Get PDF
    Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimeter distances. In these devices, the accelerating force is provided by a driver pulse, either a laser pulse or a particle bunch, that loses its energy into the plasma generating huge electric fields up to tens of GV/m. The stability of such fields strongly depends on plasma density, whose exact value should be precisely known and controlled. However, currently available methods based on spectroscopic or interferometric techniques find it very difficult to measure plasma density lower than 1015–16 cm−3 in capillary-discharge waveguides. Here, we present a novel diagnostic tool that allows us to estimate the average density of a plasma capillary by probing it with an ultra-relativistic electron beam. The plasma density and the generated accelerating field are inferred by analyzing the beam longitudinal phase space after its interaction with the plasma. The results are validated by simulations showing excellent agreement
    • …
    corecore