115 research outputs found

    Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver.

    Full text link
    Nanosilver (Ag NPs) is currently one of the most commercialized antimicrobial nanoparticles with as yet, still unresolved cytotoxicity origins. To date, research efforts have mostly described the antimicrobial contribution from the leaching of soluble silver, while the undissolved solid Ag particulates are often considered as being microbiologically inert, serving only as source of the cytotoxic Ag ions. Here, we show the rapid stimulation of lethal cellular oxidative stress in bacteria by the presence of the undissolved Ag particulates. The cytotoxicity characteristics are distinct from those arising from the leached soluble Ag, the latter being locked in organic complexes. The work also highlights the unique oxidative stress-independent bacterial toxicity of silver salt. Taken together, the findings advocate that future enquiries on the antimicrobial potency and also importantly, the environmental and clinical impact of Ag NPs use, should pay attention to the potential bacterial toxicological responses to the undissolved Ag particulates, rather than just to the leaching of soluble silver. The findings also put into question the common use of silver salt as model material for evaluating bacterial toxicity of Ag NPs

    Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance.

    Full text link
    BackgroundTreatment of bacterial biofilms are difficult and in many cases, expensive. Bacterial biofilms are naturally more resilient to antimicrobial agents than their free-living planktonic counterparts, rendering the community growth harder to control. The present work described the risks of long-term use of an important alternative antimicrobial, silver nanoparticles (NAg), for the first time, on the dominant mode of bacterial growth.ResultsNAg could inhibit the formation as well as eradicating an already grown biofilm of Pseudomonas aeruginosa, a pathogen notorious for its resilience to antibiotics. The biofilm-forming bacterium however, evolved a reduced sensitivity to the nanoparticle. Evidence suggests that survival is linked to the development of persister cells within the population. A similar adaptation was also seen upon prolonged exposures to ionic silver (Ag+). The persister population resumed normal growth after subsequent passage in the absence of silver, highlighting the potential risks of recurrent infections with long-term NAg (and Ag+) treatments of biofilm growth. The present study further observed a potential silver/antibiotic cross-resistance, whereby NAg (as well as Ag+) could not eradicate an already growing gentamicin-resistant P. aeruginosa biofilm. The phenomena is thought to result from the hindered biofilm penetration of the silver species. In contrast, both silver formulations inhibited biofilm formation of the resistant strain, presenting a promising avenue for the control of biofilm-forming antibiotic-resistant bacteria.ConclusionThe findings signify the importance to study the nanoparticle adaptation phenomena in the biofilm mode of bacterial growth, which are apparently unique to those already reported with the planktonic growth counterparts. This work sets the foundation for future studies in other globally significant bacterial pathogens when present as biofilms. Scientifically based strategies for management of pathogenic growth is necessary, particularly in this era of increasing antibiotic resistance

    Tailored biocompatible polyurethane-poly(ethylene glycol) hydrogels as a versatile nonfouling biomaterial

    Get PDF
    Polyurethane-based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane-poly(ethylene glycol) (PU-PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one-pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long-term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU-PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU-based biomaterials for a variety of applications

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE

    A Normalized Tree Index for identification of correlated clinical parameters in microarray experiments

    Get PDF
    Martin C, Tauchen A, Becker A, Nattkemper TW. A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining. 2011;4(1): 2.BACKGROUND: Measurements on gene level are widely used to gain new insights in complex diseases e.g. cancer. A promising approach to understand basic biological mechanisms is to combine gene expression profiles and classical clinical parameters. However, the computation of a correlation coefficient between high-dimensional data and such parameters is not covered by traditional statistical methods. METHODS: We propose a novel index, the Normalized Tree Index (NTI), to compute a correlation coefficient between the clustering result of high-dimensional microarray data and nominal clinical parameters. The NTI detects correlations between hierarchically clustered microarray data and nominal clinical parameters (labels) and gives a measurement of significance in terms of an empiric p-value of the identified correlations. Therefore, the microarray data is clustered by hierarchical agglomerative clustering using standard settings. In a second step, the computed cluster tree is evaluated. For each label, a NTI is computed measuring the correlation between that label and the clustered microarray data. RESULTS: The NTI successfully identifies correlated clinical parameters at different levels of significance when applied on two real-world microarray breast cancer data sets. Some of the identified highly correlated labels confirm the actual state of knowledge whereas others help to identify new risk factors and provide a good basis to formulate new hypothesis. CONCLUSIONS: The NTI is a valuable tool in the domain of biomedical data analysis. It allows the identification of correlations between high-dimensional data and nominal labels, while at the same time a p-value measures the level of significance of the detected correlations

    Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies

    Get PDF
    Purpose This article provides a review of the transcriptomic expression profiling studies that have been performed on meningiomas so far. We discuss some future prospects and challenges ahead in the field of gene expression profiling. Methods We performed a systematic search in the PubMed and EMBASE databases in May 2010 using the following search terms alone or in combination: “meningioma”, “microarray analysis”, “oligonucleotide array sequence analysis”, or “gene expression profiling”. Only original research articles in English that had used RNA hybridized to high-resolution microarray chips to generate gene expression profiles were included. Results We identified 13 articles matching the inclusion criteria. All studies had been performed during the last decade. Conclusions The main results of the studies can be grouped in three categories: (1) several groups have identified meningioma-specific genes and genes associated with the three WHO grades, and the main histological subtypes of grade I meningiomas; (2) one publication has shown that the general transcription profile of samples of all WHO grades differs in vivo and in vitro; (3) one report provides evidence that microarray technology can be used in an automated fashion to classify tumors. Due to lack of consensus on how microarray data are presented, possible general trends found across the studies are difficult to extract. This could obstruct the discovery of important genes and pathways universally involved in meningioma biology

    Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment

    Get PDF
    Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised concerns about possible adverse effects on biological systems. To protect consumer’s health and the environment, efficient monitoring of silver nanoparticles needs to be established. Here, we present the development of human metallothionein (MT) based surface plasmon resonance (SPR) sensor for rapid detection of nanosilver. Incorporation of human metallothionein 1A to the sensor surface enables screening for potentially biologically active silver nanoparticles at parts per billion sensitivity. Other protein ligands were also tested for binding capacity of the nanosilver and were found to be inferior to the metallothionein. The biosensor has been characterized in terms of selectivity and sensitivity towards different types of silver nanoparticles and applied in measurements of real-life samples—such as fresh vegetables and river water. Our findings suggest that human MT1-based SPR sensor has the potential to be utilized as a routine screening method for silver nanoparticles, that can provide rapid and automated analysis dedicated to environmental and food safety monitoring
    • …
    corecore