523 research outputs found
Prospects for Discovering Supersymmetry at the LHC
Supersymmetry is one of the best-motivated candidates for physics beyond the
Standard Model that might be discovered at the LHC. There are many reasons to
expect that it may appear at the TeV scale, in particular because it provides a
natural cold dark matter candidate. The apparent discrepancy between the
experimental measurement of g_mu - 2 and the Standard model value calculated
using low-energy e+ e- data favours relatively light sparticles accessible to
the LHC. A global likelihood analysis including this, other electroweak
precision observables and B-decay observables suggests that the LHC might be
able to discover supersymmetry with 1/fb or less of integrated luminosity. The
LHC should be able to discover supersymmetry via the classic missing-energy
signature, or in alternative phenomenological scenarios. The prospects for
discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure
Emergent Universe in Brane World Scenario with Schwarzschild-de Sitter Bulk
A model of an emergent universe is obtained in brane world. Here the bulk
energy is in the form of cosmological constant, while the brane consists of a
fluid satisfying an equation of state of the form , which
is effectively a radiation equation of state at high energies. It is shown that
with the positive bulk cosmological constant, one of our models represents an
emergent universe.Comment: 4 pages, no figure, accepted for publication in Gen.Relt.Gra
Black hole solutions with dilatonic hair in higher curvature gravity
A new numerical integration method for examining a black hole structure was
realized. Black hole solutions with dilatonic hair of 4D low energy effective
SuperString Theory action with Gauss-Bonnet quadratic curvature contribution
were studied, using this method, inside and outside the event horizon.
Thermodynamical properties of this solution were also studied.Comment: 10 pages, 6 figures, RevTeX, figures in LaTeX or PostScript are
avaible upon request via e-mail address: [email protected], Submitted
to Phys.Rev.
Condenser-free contrast methods for transmitted-light microscopy
Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser- free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the il- luminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared
The Quenching of the Axial Coupling in Nuclear and Neutron-Star Matter
Using a chirally invariant effective Lagrangian, we calculate the density and
isospin dependences of the in-medium axial coupling, , in spatially
uniform matter present in core collapse supernovae and neutron stars. The
quenching of with density in matter with different proton fractions is
found to be similar. However, our results suggest that the quenching of the
nucleon's in matter with hyperons is likely to be significantly greater
than in matter with nucleons only.Comment: 4 pages revtex, 2 eps figure
Reply Comment: Comparison of Approaches to Classical Signature Change
We contrast the two approaches to ``classical" signature change used by
Hayward with the one used by us (Hellaby and Dray). There is (as yet) no
rigorous derivation of appropriate distributional field equations. Hayward's
distributional approach is based on a postulated modified form of the field
equations. We make an alternative postulate. We point out an important
difference between two possible philosophies of signature change --- ours is
strictly classical, while Hayward's Lagrangian approach adopts what amounts to
an imaginary proper ``time" on one side of the signature change, as is
explicitly done in quantum cosmology. We also explain why we chose to use the
Darmois-Israel type junction conditions, rather than the Lichnerowicz type
junction conditions favoured by Hayward. We show that the difference in results
is entirely explained by the difference in philosophy (imaginary versus real
Euclidean ``time"), and not by the difference in approach to junction
conditions (Lichnerowicz with specific coordinates versus Darmois with general
coordinates).Comment: 10 pages, latex, no figures. Replying to - "Comment on `Failure of
Standard Conservation Laws at a Classical Change of Signature'", S.A.
Hayward, Phys. Rev. D52, 7331-7332 (1995) (gr-qc/9606045
Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses
We extend previous analyses on the interplay between nonuniversalities in the
gaugino mass sector and the thermal relic densities of LSP neutralinos, in
particular to the case of moderate to large tan beta. We introduce a set of
parameters that generalizes the standard unified scenario to cover the complete
allowed parameter space in the gaugino mass sector. We discuss the physical
significance of the cosmologically preferred degree of degeneracy between
charginos and the LSP and study the effect this degree of degeneracy has on the
prospects for direct detection of relic neutralinos in the next round of dark
matter detection experiments. Lastly, we compare the fine tuning required to
achieve a satisfactory relic density with the case of universal gaugino masses,
as in minimal supergravity, and find it to be of a similar magnitude. The
sensitivity of quantifiable measures of fine-tuning on such factors as the
gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure
On Yukawa quasi-unification with mu<0
Although recent data on the muon anomalous magnetic moment strongly disfavor
the constrained minimal supersymmetric standard model with mu<0, they cannot
exclude it because of theoretical ambiguities. We consider this model
supplemented by a Yukawa quasi-unification condition which allows an acceptable
b-quark mass. We find that the cosmological upper bound on the lightest
sparticle relic abundance is incompatible with the data on the branching ratio
of b-->s gamma, which is evaluated by including all the next-to-leading order
corrections. Thus, this scheme is not viable.Comment: 4 pages including 3 figures, Revte
The MSSM fine tuning problem: a way out
As is well known, electroweak breaking in the MSSM requires substantial
fine-tuning, mainly due to the smallness of the tree-level Higgs quartic
coupling, lambda_tree. Hence the fine tuning is efficiently reduced in
supersymmetric models with larger lambda_tree, as happens naturally when the
breaking of SUSY occurs at a low scale (not far from the TeV). We show, in
general and with specific examples, that a dramatic improvement of the fine
tuning (so that there is virtually no fine-tuning) is indeed a very common
feature of these scenarios for wide ranges of tan(beta) and the Higgs mass
(which can be as large as several hundred GeV if desired, but this is not
necessary). The supersymmetric flavour problems are also drastically improved
due to the absence of RG cross-talk between soft mass parameters.Comment: 28 pages, 9 PS figures, LaTeX Published versio
The issue of Dark Energy in String Theory
Recent astrophysical observations, pertaining to either high-redshift
supernovae or cosmic microwave background temperature fluctuations, as those
measured recently by the WMAP satellite, provide us with data of unprecedented
accuracy, pointing towards two (related) facts: (i) our Universe is accelerated
at present, and (ii) more than 70 % of its energy content consists of an
unknown substance, termed dark energy, which is believed responsible for its
current acceleration. Both of these facts are a challenge to String theory. In
this review I outline briefly the challenges, the problems and possible avenues
for research towards a resolution of the Dark Energy issue in string theory.Comment: Based on Invited lecture at the ``Third Aegean Summer School on: The
Invisible Universe: Dark matter and Dark energy'', Karfas, Chios Island
(Greece) September 26-October 1 200
- …