762 research outputs found

    Instanton-Induced Interactions in Finite Density QCD

    Get PDF
    We consider the finite density, zero-temperature behaviour of quark matter in the instanton picture. Since the instanton-induced interactions are attractive in both qˉq\bar{q}q and qqqq channels, a competition ensues between phases of matter with condensation in either or both. It results in chiral symmetry restoration due to the onset of diquark condensation, a `colour superconductor', at finite density.Comment: 4 pages, 5 figures, uses espcrc1.sty. To appear in Proceedings of Quark Matter 99 (10-14 May 1999, Torino, Italy) and PANIC 99 (10-16 June 1999, Uppsala, Sweden

    Static axisymmetric spacetimes with non-generic world-line SUSY

    Full text link
    The conditions for the existence of Killing-Yano tensors, which are closely related to the appearance of non-generic world-line SUSY, are presented for static axisymmetric spacetimes. Imposing the vacuum Einstein equation, the set of solutions admitting Killing-Yano tensors is considered. In particular, it is shown that static, axisymmetric and asymptotically flat vacuum solutions admitting Killing-Yano tensors are only the Schwarzschild solution.Comment: 10 pages (RevTeX), TIT/HEP-253/COSMO-4

    An Effective Lagrangian with Broken Scale and Chiral Symmetry IV: Nucleons and Mesons at Finite Temperature

    Full text link
    We study the finite temperature properties of an effective chiral Lagrangian which describes nuclear matter. Thermal fluctuations in both the nucleon and the meson fields are considered. The logarithmic and square root terms in the effective potential are evaluated by expansion and resummation with the result written in terms of the exponential integral and the error function, respectively. In the absence of explicit chiral symmetry breaking a phase transition restores the symmetry, but when the pion has a mass the transition is smooth. The nucleon and meson masses as a functions of density and temperature are discussed.Comment: 21 pages LaTeX + 11 postscript figures, uses epsf.st

    SUSY in the sky

    Full text link
    Spinning particles in curved space-time can have fermionic symmetries generated by the square root of bosonic constants of motion other than the Hamiltonian. We present a general analysis of the conditions under which such new supersymmetries appear, and discuss the Poisson-Dirac algebra of the resulting set of charges, including the conditions of closure of the new algebra. An example of a new non-trivial supersymmetry is found in black-hole solutions of the Kerr-Newman type and corresponds to the Killing-Yano tensor, which plays an important role in solving the Dirac equation in these black-hole metrics.Comment: 28, NIKHEF-H/93-04 and DAMTP R92/4

    Corrections to the Nuclear Axial Vector Coupling in a Nuclear Medium

    Full text link
    We examine further corrections to the time component of the axial vector coupling constant in a nuclear medium. The dominant correction is that of exchange currents. The corrections we examine make the remaining discrepancy worse.Comment: 6 pages, 2 figure

    A boundary value problem for the five-dimensional stationary rotating black holes

    Full text link
    We study the boundary value problem for the stationary rotating black hole solutions to the five-dimensional vacuum Einstein equation. Assuming the two commuting rotational symmetry and the sphericity of the horizon topology, we show that the black hole is uniquely characterized by the mass, and a pair of the angular momenta.Comment: 16 pages, no figure

    The Nonperturbative Color Meissner Effect in a Two-Flavor Color Superconductor

    Full text link
    Color superconductivity in QCD breaks the SU(3) color gauge group down to SU(2), inducing masses in five of the eight gluons. This is a dynamical Higgs effect, in which the diquark condensate acts as the vacuum expectation value of a composite scalar field. In order to analyze this effect at low quark density, when gaps are large and generated nonperturbatively, we use instanton-induced quark interactions augmented with gauge-invariant interactions between quarks and perturbative gluons. The five gluon masses are found from the static limit of the relevant polarization operators, in which transversality is maintained via the Nambu-Goldstone modes of broken color symmetry. Working in the microscopic theory we calculate these masses to one-loop order and estimate their density dependence. Finally, we speculate that the Meissner effect may postpone the onset of color superconductivity to higher matter density than estimated previously.Comment: 27 pages, 7 figures, uses epsf.sty; typos corrected in Eqs. (38

    Series solutions for a static scalar potential in a Salam-Sezgin Supergravitational hybrid braneworld

    Full text link
    The static potential for a massless scalar field shares the essential features of the scalar gravitational mode in a tensorial perturbation analysis about the background solution. Using the fluxbrane construction of [8] we calculate the lowest order of the static potential of a massless scalar field on a thin brane using series solutions to the scalar field's Klein Gordon equation and we find that it has the same form as Newton's Law of Gravity. We claim our method will in general provide a quick and useful check that one may use to see if their model will recover Newton's Law to lowest order on the brane.Comment: 5 pages, no figure

    A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric

    Get PDF
    A key result in the proof of black hole uniqueness in 4-dimensions is that a stationary black hole that is ``rotating''--i.e., is such that the stationary Killing field is not everywhere normal to the horizon--must be axisymmetric. The proof of this result in 4-dimensions relies on the fact that the orbits of the stationary Killing field on the horizon have the property that they must return to the same null geodesic generator of the horizon after a certain period, PP. This latter property follows, in turn, from the fact that the cross-sections of the horizon are two-dimensional spheres. However, in spacetimes of dimension greater than 4, it is no longer true that the orbits of the stationary Killing field on the horizon must return to the same null geodesic generator. In this paper, we prove that, nevertheless, a higher dimensional stationary black hole that is rotating must be axisymmetric. No assumptions are made concerning the topology of the horizon cross-sections other than that they are compact. However, we assume that the horizon is non-degenerate and, as in the 4-dimensional proof, that the spacetime is analytic.Comment: 24 pages, no figures, v2: footnotes and references added, v3: numerous minor revision
    corecore