328 research outputs found

    Analysis by x-ray microtomography of a granular packing undergoing compaction

    Full text link
    Several acquisitions of X-ray microtomography have been performed on a beads packing while it compacts under vertical vibrations. An image analysis allows to study the evolution of the packing structure during its progressive densification. In particular, the volume distribution of the pores reveals a large tail, compatible to an exponential law, which slowly reduces as the system gets more compact. This is quite consistent, for large pores, with the free volume theory. These results are also in very good agreement with those obtained by a previous numerical model of granular compaction.Comment: 4 pages, 4 figures. Latex (revtex4). to be published in Phys. Rev.

    Energy landscape, two-level systems and entropy barriers in Lennard-Jones clusters

    Full text link
    We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clusters containing up to 80 argon atoms and to locate many pairs of minima with the right characteristics to form two-level systems (TLS). The true TLS are singled out by calculating the ground-state tunneling splitting. The entropic contribution to all barriers is evaluated and discussed.Comment: 4 pages, RevTex, 2 PostScript figure

    Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space

    Get PDF
    A quantitative test for the validity of the semi-classical approximation in gravity is given. The criterion proposed is that solutions to the semi-classical Einstein equations should be stable to linearized perturbations, in the sense that no gauge invariant perturbation should become unbounded in time. A self-consistent linear response analysis of these perturbations, based upon an invariant effective action principle, necessarily involves metric fluctuations about the mean semi-classical geometry, and brings in the two-point correlation function of the quantum energy-momentum tensor in a natural way. This linear response equation contains no state dependent divergences and requires no new renormalization counterterms beyond those required in the leading order semi-classical approximation. The general linear response criterion is applied to the specific example of a scalar field with arbitrary mass and curvature coupling in the vacuum state of Minkowski spacetime. The spectral representation of the vacuum polarization function is computed in n dimensional Minkowski spacetime, and used to show that the flat space solution to the semi-classical Einstein equations for n=4 is stable to all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083, with two additional sections and two new appendices giving a complete, explicit example of the semi-classical stability criterion proposed in the previous pape

    A Taxonomy of Causality-Based Biological Properties

    Get PDF
    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this framework to a portion of a real metabolic pathway

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection

    Get PDF
    The activating natural killer (NK) cell receptor Ly49H recognizes the mouse cytomegalovirus (MCMV) m157 glycoprotein expressed on the surface of infected cells and is required for protection against MCMV. Although Ly49H has previously been shown to signal via DAP12, we now show that Ly49H must also associate with and signal via DAP10 for optimal function. In the absence of DAP12, DAP10 enables Ly49H-mediated killing of m157-bearing target cells, proliferation in response to MCMV infection, and partial protection against MCMV. DAP10-deficient Ly49H+ NK cells, expressing only Ly49H–DAP12 receptor complexes, are partially impaired in their ability to proliferate during MCMV infection, display diminished ERK1/2 activation, produce less IFN-γ upon Ly49H engagement, and demonstrate reduced control of MCMV infection. Deletion of both DAP10 and DAP12 completely abrogates Ly49H surface expression and control of MCMV infection. Thus, optimal NK cell–mediated immunity to MCMV depends on Ly49H signaling through both DAP10 and DAP12

    A variant of the castor zinc finger 1 (CASZ1) gene is differentially associated with the clinical classification of chronic venous disease

    Get PDF
    Recent reports have suggested a reproducible association between the rs11121615 SNP, located within an intron of the castor zinc finger 1 (CASZ1) gene, and varicose veins. This study aimed to determine if this variant is also differentially associated with the various clinical classifications of chronic venous disease (CVD). The rs11121615 SNP was genotyped in two independent cohorts from New Zealand (n = 1876 controls /1606 CVD cases) and the Netherlands (n = 1626/2966). Participants were clinically assessed using well-established CVD criteria. The association between the rs11121615 C-allele and varicose veins was validated in both cohorts. This was strongest in those with higher clinical severity classes and was not significant in those with non-varicose vein CVD. Functional analysis of the rs11121615 variant demonstrated that the risk allele was associated with increased enhancer activity. This study demonstrates that the CASZ1 gene associated C-allele of rs11121615 has a significant, reproducible, association with CVD (CEAP C ≥ 2 meta-odds ratio 1.31, 95% CI 1.27-1.34, P = 1 × 10-98, PHet = 0.25), but not with non-varicose vein (CEAP C1, telangiectasia or reticular veins) forms of venous disease. The effect size of this association therefore appears to be susceptible to influence by phenotypic heterogeneity, particularly if a cohort includes a large number of cases with lower severity CVD

    Infrared and ultraviolet cutoffs of quantum field theory

    Get PDF
    Quantum gravity arguments and the entropy bound for effective field theories proposed in PRL 82, 4971 (1999) lead to consider two correlated scales which parametrize departures from relativistic quantum field theory at low and high energies. A simple estimate of their possible phenomenological implications leads to identify a scale of around 100 TeV as an upper limit on the domain of validity of a quantum field theory description of Nature. This fact agrees with recent theoretical developments in large extra dimensions. Phenomenological consequences in the beta-decay spectrum and cosmic ray physics associated to possible Lorentz invariance violations induced by the infrared scale are discussed. It is also suggested that this scale might produce new unexpected effects at the quantum level.Comment: 5 pages, no figures; general discussion improved, main results unchanged. Version to appear in PR

    Does technology and Innovation Management improve Market Position? Empirical Evidence from Innovating Firms in South Africa

    Get PDF
    There is a growing recognition of the central role of technology and knowledge management for market success of organizations. Little is empirically know, however, about this relationship. Drawing on the South African Innovation Survey, a unique dataset on innovative behavior of South African firms in manufacturing and services, this paper investigates the question to what extent and in which ways do technology and innovation management activities affect firms’ market position. Findings show that conducting technology strategy activities pays out. Moreover, especially a combination of internal and external technology audits seems to be beneficial for organizational performance

    Synchronous timing of return to breeding sites in a long-distance migratory seabird with ocean-scale variation in migration schedules

    Get PDF
    Background Migratory birds generally have tightly scheduled annual cycles, in which delays can have carry-over effects on the timing of later events, ultimately impacting reproductive output. Whether temporal carry-over effects are more pronounced among migrations over larger distances, with tighter schedules, is a largely unexplored question. Methods We tracked individual Arctic Skuas Stercorarius parasiticus, a long-distance migratory seabird, from eight breeding populations between Greenland and Siberia using light-level geolocators. We tested whether migration schedules among breeding populations differ as a function of their use of seven widely divergent wintering areas across the Atlantic Ocean, Mediterranean Sea and Indian Ocean. Results Breeding at higher latitudes led not only to later reproduction and migration, but also faster spring migration and shorter time between return to the breeding area and clutch initiation. Wintering area was consistent within individuals among years; and more distant areas were associated with more time spent on migration and less time in the wintering areas. Skuas adjusted the period spent in the wintering area, regardless of migration distance, which buffered the variation in timing of autumn migration. Choice of wintering area had only minor effects on timing of return at the breeding area and timing of breeding and these effects were not consistent between breeding populations. Conclusion The lack of a consistent effect of wintering area on timing of return between breeding areas indicates that individuals synchronize their arrival with others in their population despite extensive individual differences in migration strategies
    corecore