62 research outputs found

    Brane-Antibrane Inflation in Orbifold and Orientifold Models

    Get PDF
    We analyse the cosmological implications of brane-antibrane systems in string-theoretic orbifold and orientifold models. In a class of realistic models, consistency conditions require branes and antibranes to be stuck at different fixed points, and so their mutual attraction generates a potential for one of the radii of the underlying torus or the 4D string dilaton. Assuming that all other moduli have been fixed by string effects, we find that this potential leads naturally to a period of cosmic inflation with the radion or dilaton field as the inflaton. The slow-roll conditions are satisfied more generically than if the branes were free to move within the space. The appearance of tachyon fields at certain points in moduli space indicates the onset of phase transitions to different non-BPS brane systems, providing ways of ending inflation and reheating the corresponding observable brane universe. In each case we find relations between the inflationary parameters and the string scale to get the correct spectrum of density perturbations. In some examples the small numbers required as inputs are no smaller than 0.01, and are the same small quantities which are required to explain the gauge hierarchy.Comment: 30 pages, 2 figures. Substantial changes on version 1. New cosmological scenarios proposed including the dilaton as the inflaton. Main conclusions unchange

    Considering discrepancy when calibrating a mechanistic electrophysiology model

    Get PDF
    Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions—that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    Effects of inhomogeneous broadening on reflection spectra of Bragg multiple quantum well structures with a defect

    Full text link
    The reflection spectrum of a multiple quantum well structure with an inserted defect well is considered. The defect is characterized by the exciton frequency different from that of the host's wells. It is shown that for relatively short structures, the defect produces significant modifications of the reflection spectrum, which can be useful for optoelectronic applications. Inhomogeneous broadening is shown to affect the spectrum in a non-trivial way, which cannot be described by the standard linear dispersion theory. A method of measuring parameters of both homogeneous and inhomogeneous broadenings of the defect well from a single CW reflection spectrum is suggested.Comment: 27 pages, 6 eps figures; RevTe

    Middle to late Pleistocene palaeoecological reconstructions and palaeotemperature estimates for cold/cool stage deposits at Whittlesey, eastern England

    Get PDF
    Fossiliferous beds in a complex sequence of late Middle to Late Pleistocene deposits at Whittlesey, eastern England, provided a rare opportunity for a multidisciplinary study of the palaeoecology of cool/cold stage deposits from different glacial stages. The fossiliferous sediments investigated form part of the River Nene 1st Terrace. Three of the four fossil assemblages investigated pre-date the last interglacial stage (Ipswichian/Eemian/marine oxygen isotope stage (MIS) 5e), whereas the other dates to part of the MIS 3 interstadial complex (Middle Devensian/Weichselian). Pollen, plant macrofossil, molluscan, coleopteran, ostracod, foraminifera and vertebrate data are available to a greater or lesser extent for each cool/cold stage assemblage, and they broadly present the same ecological picture for each one: a continuum from low-energy permanent to non-permanent aquatic habitats through marshland with associated waterside taxa, together with flood influxes of fluvial, riparian and ruderal taxa. Although each fossil assemblage records cool/cold climatic conditions, to a greater or lesser extent, these conditions are more apparent in the insect and ostracod faunas. In comparison with results published for the Last Glacial Maximum (LGM) stadial in The Netherlands, palaeotemperature estimates based on ranges of mutual agreement between independent coleopteran and ostracod methods for the three pre-Ipswichian/Eemian assemblages indicate minimum mean July air temperatures that are from +1° to +3 °C warmer, but January values that embrace the −8 °C estimate for the LGM. There is, however, a disparity between the coleopteran and ostracod palaeotemperature estimates for the Middle Devensian/Weichselian fossil assemblage, which are based on two different sample stratigraphic levels; the lower, coleopteran assemblage is indicative of very cool, continental climates, whereas the stratigraphically slightly higher ostracod assemblage suggests a climatic amelioration. Lack of numerical age-estimates prevents a robust stratigraphical interpretation, but the youngest pre-Ipswichian/Eemian fossil assemblage could date to the MIS 7–6 transition, at a time when cooling possibly preceded glacially driven sea-level fall. It is apparent from the rich coleopteran data that some continental cold-indicator taxa also appeared in pre-Ipswichian/Eemian cold stages and therefore assignment of continental cold-indicator taxa to particular Devensian/Weichselian intervals should be undertaken with care

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    A case of boundedness in Littlewood's problem on oscillatory differential equations

    No full text
    corecore