1,089 research outputs found

    Effect of the Generalized Uncertainty Principle on Post-Inflation Preheating

    Get PDF
    We examine effects of the Generalized Uncertainty Principle, predicted by various theories of quantum gravity to replace the Heisenberg's uncertainty principle near the Planck scale, on post inflation preheating in cosmology, and show that it can predict either an increase or a decrease in parametric resonance and a corresponding change in particle production. Possible implications are considered.Comment: v1: 9 pages, revtex4, no figures, accepted for publication in JCAP; v2: one reference added and various cosmetic (but no physics) changes to match published versio

    Non-universality of compact support probability distributions in random matrix theory

    Get PDF
    The two-point resolvent is calculated in the large-n limit for the generalized fixed and bounded trace ensembles. It is shown to disagree with that of the canonical Gaussian ensemble by a nonuniversal part that is given explicitly for all monomial potentials V(M)=M2p. Moreover, we prove that for the generalized fixed and bounded trace ensemble all k-point resolvents agree in the large-n limit, despite their nonuniversality

    Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots

    Full text link
    We propose a model for spectral diffusion of localized spins in semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each nuclear spin flip-flop is assumed to be independent, the rate for this process being calculated by a method of moments. Our calculated spin decoherence time TM=0.64T_{M}=0.64 ms for donor electron spins in Si:P is a factor of two longer than spin echo decay measurements. For 31^{31}P nuclear spins we show that spectral diffusion is well into the motional narrowing regime. The calculation for GaAs quantum dots gives TM=10−50T_{M}=10-50 ÎŒ\mus depending on the quantum dot size. Our theory indicates that nuclear induced spectral diffusion should not be a serious problem in developing spin-based semiconductor quantum computer architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.

    Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism

    Get PDF
    This is a post-print version of the article. Copyright @ 2010 Elsevier B.V.Direct chill (DC) cast ingots of wrought Al alloys conventionally require the deliberate addition of a grain refiner to provide a uniform as-cast microstructure for the optimisation of both mechanical properties and processability. Grain refiner additions have been in widespread industrial use for more than half a century. Intensive melt shearing can provide grain refinement without the need for a specific grain refiner addition for both magnesium and aluminium based alloys. In this paper we present experimental evidence of the grain refinement in an experimental wrought aluminium alloy achieved by intensive melt shearing in the liquid state prior to solidification. The mechanisms for high shear induced grain refinement are correlated with the evolution of oxides in alloys. The oxides present in liquid aluminium alloys, normally as oxide films and clusters, can be effectively dispersed by intensive shearing and then provide effective sites for the heterogeneous nucleation of Al3Ti phase. As a result, Al3Ti particles with a narrow size distribution and hence improved efficiency as active nucleation sites of alpha-aluminium grains are responsible for the achieved significant grain refinement. This is termed a multi-step nucleation mechanism.Funding was obtained from the EPRSC

    Compact support probability distributions in random matrix theory

    Get PDF
    We consider a generalization of the fixed and bounded trace ensembles introduced by Bronk and Rosenzweig up to an arbitrary polynomial potential. In the large-N limit we prove that the two are equivalent and that their eigenvalue distribution coincides with that of the "canonical" ensemble with measure exp[-nnTr V(M)]. The mapping of the corresponding phase boundaries is illuminated in an explicit example. In the case of a Gaussian potential we are able to derive exact expressions for the one- and two-point correlator for finite nn, having finite support

    Spacetime Energy Decreases under World-sheet RG Flow

    Get PDF
    We study renormalization group flows in unitary two dimensional sigma models with asymptotically flat target spaces. Applying an infrared cutoff to the target space, we use the Zamolodchikov c-theorem to demonstrate that the target space ADM energy of the UV fixed point is greater than that of the IR fixed point: spacetime energy decreases under world-sheet RG flow. This result mirrors the well understood decrease of spacetime Bondi energy in the time evolution process of tachyon condensation.Comment: 25 pages, 4 figures, harvma

    Trust and control interrelations: New perspectives on the trust control nexus

    Get PDF
    This article is the post-print version of the published article that may be accessed at the link below. Copyright @ 2007 Sage Publications.This article introduces the special issue on New Perspectives on the Trust-Control Nexus in Organizational Relations. Trust and control are interlinked processes commonly seen as key to reach effectiveness in inter- and intraorganizational relations. The relation between trust and control is, however, a complex one, and research into this relation has given rise to various and contradictory interpretations of how trust and control relate. A well-known discussion is directed at whether trust and control are better conceived as substitutes, or as complementary mechanisms of governance. The articles in this special issue bring the discussion on the relationship between both concepts a step further by identifying common factors, distinctive mechanisms, and key implications relevant for theory building and empirical research. By studying trust and control through different perspectives and at different levels of analysis, the articles provide new theoretical insights and empirical evidence on the foundations of the trust-control interrelations

    Universal corrections to the Fermi-liquid theory

    Full text link
    We show that the singularities in the dynamical bosonic response functions of a generic 2D Fermi liquid give rise to universal, non-analytic corrections to the Fermi-liquid theory. These corrections yield a T2T^2 term in the specific heat, TT terms in the effective mass and the uniform spin susceptibility χs(Q=0,T)\chi_s (Q=0,T), and ∣Q∣|Q| term in χs(Q,T=0)\chi_s (Q,T=0). The existence of these terms has been the subject of recent controversy, which is resolved in this paper. We present exact expressions for all non-analytic terms to second order in a generic interaction U(q)U(q) and show that only U(0) and U(2pF)U(2p_F) matter.Comment: references added, a typo correcte

    Finite temperature excitations of a trapped Bose-Fermi mixture

    Full text link
    We present a detailed study of the low-lying collective excitations of a spherically trapped Bose-Fermi mixture at finite temperature in the collisionless regime. The excitation frequencies of the condensate are calculated self-consistently using the static Hartree-Fock-Bogoliubov theory within the Popov approximation. The frequency shifts and damping rates due to the coupled dynamics of the condensate, noncondensate, and degenerate Fermi gas are also taken into account by means of the random phase approximation and linear response theory. In our treatment, the dipole excitation remains close to the bare trapping frequency for all temperatures considered, and thus is consistent with the generalized Kohn theorem. We discuss in some detail the behavior of monopole and quadrupole excitations as a function of the Bose-Fermi coupling. At nonzero temperatures we find that, as the mixture moves towards spatial separation with increasing Bose-Fermi coupling, the damping rate of the monopole (quadrupole) excitation increases (decreases). This provides us a useful signature to identify the phase transition of spatial separation.Comment: 10 pages, 8 figures embedded; to be published in Phys. Rev.

    Tachyonization of the \LaCDM cosmological model

    Get PDF
    In this work a tachyonization of the Λ\LambdaCDM model for a spatially flat Friedmann-Robertson-Walker space-time is proposed. A tachyon field and a cosmological constant are considered as the sources of the gravitational field. Starting from a stability analysis and from the exact solutions for a standard tachyon field driven by a given potential, the search for a large set of cosmological models which contain the Λ\LambdaCDM model is investigated. By the use of internal transformations two new kinds of tachyon fields are derived from the standard tachyon field, namely, a complementary and a phantom tachyon fields. Numerical solutions for the three kinds of tachyon fields are determined and it is shown that the standard and complementary tachyon fields reproduces the Λ\LambdaCDM model as a limiting case. The standard tachyon field can also describe a transition from an accelerated to a decelerated regime, behaving as an inflaton field at early times and as a matter field at late times. The complementary tachyon field always behaves as a matter field. The phantom tachyon field is characterized by a rapid expansion where its energy density increases with time.Comment: Version accepted for publication in GR
    • 

    corecore