1,114 research outputs found

    High-frequency antiplane wave propagation in ultra-thin films with nanostructures

    Get PDF
    AbstractUltrasonic wave propagation is one of powerful and popular methods for measuring mechanical properties of solids even at nano scales. The extraction of material constants from the measured wave data may not be accurate and reliable when waves of short wavelengths are used. The objective of this paper is to study the high-frequency antiplane wave propagation in ultra-thin films at nanoscale. A developed continuum microstructure theory will be used to capture the effect of nanostructures in ultra-thin films. This continuum theory is developed from assumed displacement fields for nanostructures. Local kinematic variables are introduced to express these local displacements and are subjected to internal continuity conditions. The accuracy of the theory is verified by comparing the results with those of the lattice model for the antiplane problem in an infinite elastic medium. Specifically, dispersion curves and corresponding displacement fields for antiplane wave propagation in the ultra-thin films are studied. The inadequacy of the conventional continuum theory is discussed

    Stability of 1+1 dimensional causal relativistic viscous hydrodynamics

    Full text link
    The stability of the 1+1 dimensional solution of Israel-Stewart theory is investigated. Firstly, the evolution of the temperature and the ratio of the bulk pressure over the equilibrium pressure of the background is explored. Then the stability with linear perturbations is studied by using the Lyapunov direct method. It shows that the shear viscosity may weaken the instability induced by the large peak of bulk viscosity around the phase transition temperature TcT_c.Comment: 18 pages, 4 figures, 1 table; to be published in Nuclear Physics

    Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus.

    Get PDF
    Adult neurogenesis is tightly regulated by the neurogenic niche. Cellular contacts between niche cells and neural stem cells are hypothesized to regulate stem cell proliferation or lineage choice. However, the structure of adult neural stem cells and the contact they form with niche cells are poorly described. Here, we characterized the morphology of radial glia-like (RGL) cells, their molecular identity, proliferative activity, and fate determination in the adult mouse hippocampus. We found the coexistence of two morphotypes of cells with prototypical morphological characteristics of RGL stem cells: Type α cells, which represented 76% of all RGL cells, displayed a long primary process modestly branching into the molecular layer and type β cells, which represented 24% of all RGL cells, with a shorter radial process highly branching into the outer granule cell layer-inner molecular layer border. Stem cell markers were expressed in type α cells and coexpressed with astrocytic markers in type β cells. Consistently, in vivo lineage tracing indicated that type α cells can give rise to neurons, astrocytes, and type β cells, whereas type β cells do not proliferate. Our results reveal that the adult subgranular zone of the dentate gyrus harbors two functionally different RGL cells, which can be distinguished by simple morphological criteria, supporting a morphofunctional role of their thin cellular processes. Type β cells may represent an intermediate state in the transformation of type α, RGL stem cells, into astrocytes

    Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys

    Get PDF
    The factors determining corrosion are reviewed in this paper, with an emphasis on iron tolerance limit and the production of high-purity castings. To understand the iron impurity tolerance limit, magnesium phase diagrams were calculated using the Pandat software package. Calculated phase diagrams can explain the iron tolerance limit and the production of high-purity castings by means of control of melt conditions; this is significant for the production of quality castings from recycled magnesium. Based on the new insight, the influence of the microstructure on corrosion of magnesium alloys is reviewed

    Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

    Full text link
    The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t3/2t^{-3/2} long time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.Comment: 8 pages, 6 figur

    The Efficacy, Safety, and Immunogenicity of Switching Between Reference Biopharmaceuticals and Biosimilars: A Systematic Review

    Get PDF
    To date, no consensus exists among stakeholders about the safety of switching between reference biological products (RPs) and biosimilars, which may have been curbing the implementation of biosimilars in clinical practice. This study synthesizes the available data on switching and assesses whether switching patients from a RP to its biosimilar or vice versa affects efficacy, safety, or immunogenicity outcomes. A total of 178 studies, in which switch outcomes from a RP to a biosimilar were reported, was identified. Data were derived from both randomized controlled trials and real-world evidence. Despite the limitations stemming from a lack of a robust design for most of the studies, the available switching data do not indicate that switching from a RP to a biosimilar is associated with any major efficacy, safety, or immunogenicity issues. Some open-label and observational studies reported increased discontinuation rates after switching, which were mainly attributed to nocebo effects. Involvement of the prescriber in any decision to switch should remain and attention should be paid to the mitigation of a potential nocebo effect

    LEEM investigation of the faceting of the Pt covered W(111) surface

    Get PDF
    A low energy electron microscope (LEEM) has been used to investigate the faceting of W(111) as induced by Pt. The atomically rough W(111) surface, when fully covered with a monolayer film of Pt and annealed to temperatures higher than {approximately} 750 K, experiences a significant morphological restructuring: the initially planar surface undergoes a faceting transition and forms three-sided pyramids with {211} faces. The experiments demonstrate the capability of LEEM for imaging both the fully and partially faceted surface. In addition, we have observed the formation of the facets in real time, when Pt is dosed onto the heated surface. We find that the transition from planar surface, to partially faceted surface, and to fully faceted surface proceeds through the nucleation and growth of spatially separated faceted regions

    Single-photon events in e^+ e^- collisions

    Full text link
    We provide a detailed investigation of single-photon production processes in e+ee^+e^- collisions with missing momenta carried by neutrinos or neutralinos. The transition amplitudes for both processes can be organized into a generic simplified, factorized form; each neutral V±\pmA vector current of missing energy carriers is factorized out and all the characteristics of the reaction is solely included in the electron vector current. Firstly, we apply the generic form to give a unified description of a single-photon production with a Dirac-type or Majorana-type neutrino-pair and to confirm their identical characteristics as suggested by the so-called Practical Dirac-Majorana Confusion Theorem. Secondly, we show that the generic amplitude form is maintained with the anomalous P- and C-invariant WWγ\gamma couplings in the neutrino-associated process and it enables us to easily understand large contributions of the anomalous WWγ\gamma couplings at higher energies and, in particular, at the points away from the Z-resonance peak. Finally, the neutralino-associated process, which receives modifications in both the left-handed and right-handed electron currents due to the exchanges of the left-handed and right-handed selectrons, can be differentiated from the neutrino-associated ones through the left-right asymmetries and/or the circular polarization of the outgoing photon.Comment: 20 pages, REVTeX, epsfig.sty, 7 figures (7 eps files

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL
    corecore