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a b s t r a c t

Ultrasonic wave propagation is one of powerful and popular methods for measuring
mechanical properties of solids even at nano scales. The extraction of material constants
from the measured wave data may not be accurate and reliable when waves of short wave-
lengths are used. The objective of this paper is to study the high-frequency antiplane wave
propagation in ultra-thin films at nanoscale. A developed continuum microstructure theory
will be used to capture the effect of nanostructures in ultra-thin films. This continuum the-
ory is developed from assumed displacement fields for nanostructures. Local kinematic
variables are introduced to express these local displacements and are subjected to internal
continuity conditions. The accuracy of the theory is verified by comparing the results with
those of the lattice model for the antiplane problem in an infinite elastic medium. Specif-
ically, dispersion curves and corresponding displacement fields for antiplane wave propa-
gation in the ultra-thin films are studied. The inadequacy of the conventional continuum
theory is discussed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thin film science has grown world-wide into a major research area; specifically, ultra-thin, plate- or beam-like structures
with submicron or nano thicknesses have attracted much attention due to their potential as highly sensitive, high-frequency
devices for applications in microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) (Craig-
head, 2000; Yoon et al., 2005). As dimensions of the material become smaller, their resistance to deformation is increasingly
determined by internal or external discontinuities (such as surfaces, grain boundary, strain gradient, and dislocation). For
long-term reliability of various devices at nanoscale, researchers should understand the mechanical properties of ultra-thin
films, especially for dynamic properties. Recently, growing interest of ultra-thin films in terahertz (THz) physics of nanoscale
materials and integrated nano-photonic or nano-phononic devices (Vollmannn et al., 2002, 2004; Ramprasad and Shi, 2005;
Cai and Wang, 2006; Sampathkumar et al., 2006) opens a new topic on the wave characteristics of nanomaterials. Although
many sophisticated approaches for predicting the mechanical properties of thin films exist, none keep up with the challenges
posed by interior nanostructures such as the surfaces, interfaces, structural discontinuities and deformation gradient of the
ultra-thin films under extreme loading conditions. The use of atomistic simulation may be a potential solution in the long
run. However, it is well known the capability of this approach is limited by its need of prohibitive computing time and
an astronomical amount of data generated in the calculations.
. All rights reserved.
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It has been recognized that classical continuum models could not be adequate in describing the response of solids when
the characteristic length (or wave length) of deformation becomes comparable to or smaller than the characteristic length of
microstructures in the solid. Starting from Cosserat’s model (1909), there have been different versions of continuum theories
with microstructures proposed by different authors (Toupin, 1962; Mindlin, 1964; Eringen and Suhubi, 1964). In these the-
ories, special kinematic variables were introduced to describe the local motion of microstructures. However, the large num-
ber of material constants were left undetermined, which would require rather prohibitive experiments. Recently, Chen et al.
(2003) and Chen and Lee (2003a,b) have attempted to determine the material constants in the micromorphic theory (Erin-
gen, 1999) by relating the micromorphic theory to atomistic models.

Another approach toward developing a continuum theory was taken by considering the exact configurations of the local
structure in the system. By employing several kinematic variables to describe the local motion in addition to the macro kine-
matic variables, continuum models with micro- or nano-structures were derived (Sun et al., 1968; Achenbach et al., 1968;
Huang and Sun, 2006) for periodically layered and nanostructure systems. The main advantage of this approach is that the
material constants in the resulting continuum model are obtained directly from the original material system without ambi-
guity. Muhlhaus and Oka (1996) developed a continuum theory by direct homogenization of the discrete equations of mo-
tion for granular materials. The approach adopted was to simply replace finite differences by the corresponding Taylor
expansion. In this analysis, the discrete system is considered as the identical masspoint connected to each other by non-lin-
ear elastic springs. Frieseche and James (2000) proposed a scheme from atomic level to continuum model. This model is
based on the affine deformation of atoms to build passage from atomic level to continuum level, and is suitable for only static
cases. Wang and Sun (2002) have introduced a continuum model with micro inertia that retains the simplicity of the classical
continuum mechanics while capturing the characteristics of the microstructure. Compared with many studies in in-plane
wave propagation in the nanostructural medium, much less attention has been paid to antiplane wave propagation. How-
ever, it should be mentioned that for many ultra-thin films’ application, the antiplane wave propagation in those structures
is one of fundamental issues in designing and predicting performance of micro- or nano-devices.

In the paper, a continuum model with nanostructures will be employed to study high-frequency antiplanewave propa-
gation in ultra-thin films. The atomistic crystal structure of the ultra-thin film, for the sake of simplicity, is represented
by a cubic lattice model. The dimensions of the crystal structure naturally appear in the constitutive equations and the equa-
tions of motion of the representative continuum. The accuracy of the present model is evaluated by comparing dispersions of
free harmonic waves predicted by the continuum model and exact analysis based on the lattice model. Finally, the corre-
sponding displacement fields in the nano-thin films are also investigated and discussed.

2. Microstructure continuum model for the ultra-thin film

A thin film of cubic structure is considered here as shown in Fig. 1. The thin film has a uniform thickness h and is assumed
to be in a state of antiplane problem. Therefore, only displacement U2 along X2-direction is considered. The discrete solid
dots denote atoms m1 and m2. The spacing between two adjacent atoms is a. Although the cubic structure is chosen for
the sake of mathematical simplicity, the proposed approach can be readily applied for ultra-thin films with other crystal
structures.
Fig. 1. Thin film structure and its lattice system.
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2.1. Atomistic constitutive modeling

We consider the crystallite body consisting of N0 atoms, as shown in Fig. 1. The kinematics are represented by the dis-
tance vectors between two atoms labeled i and j in the spatial and the material configuration:
i�j~r ¼ i~r � j~r with i�jr ¼ ji�j~rj ð1Þ
and
i�j
~R ¼ i

~R� j
~R ð2Þ
where i~r and i
~R represent the spatial and the material position vectors at atom i. The displacements between atoms i and j are

thus obtained as
i�j~u ¼ i~u� j~u ¼ i�j~r � i�j
~R ð3Þ
There are many well-known empirical energy functions describing the inter-atom interaction. In their simplest form these
empirical potentials contain only pair-wise interaction. The well known examples for this type of pair potentials include
Morse, Buckingham and Lennard-Jones potentials, which are functions of only the relative scalar distance
r ¼ i�jr ¼ ji�j~rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2 þ r2

3

q
between two atoms. r1; r2 and r3 are the vector~r components along X1;X2 and X3 directions.

For example, the Lennard-Jones potential used as a prototype model in the work has the format
VðrÞ ¼ 4e
r
r

� �12
� r

r

� �6
� �

ð4Þ
with e denoting the strength of the interaction and r denoting a characteristic length scale.
The potential energy of the atom i can be represented as sum over pair-wise interactions of this atom with all other atoms

in the body
iV ¼
1
2

X
j 6¼i

Vði�jrÞ ð5Þ
Replacing the actual positions by the use of Eq. (3), the above expression becomes
iV ¼
1
2

X
j 6¼i

Vði�jRþ i�juÞ ð6Þ
For the dynamics of the system with the particles staying in the neighborhood of the equilibrium configuration,
u ¼ i�ju ¼ ji�j~uj � ji�j

~Rj ¼ i�jR ¼ R and a Taylor series expansion with only the first two leading terms in displacements is jus-
tified as
iV ¼ V0 þ 1
2

X
j 6¼i

V 0aði�jRÞi�jua þ
1
4

X
j 6¼i;m 6¼n

V 00abði�jR; m�nRÞði�juaÞðm�nubÞ ð7Þ
where
V0 ¼ VðrÞjr¼R

V 0aði�jRÞ ¼
oVðrÞ
ora

����
r¼R

V 00abði�jR;m�nRÞ ¼ o2VðrÞ
oraorb

�����
r¼R
In the notation above, subscripts a; b ¼ 1;2;3 represent the components of the vector ~r;V0 is the potential energy corre-
sponding to the equilibrium configuration, the coefficient V 0aði�jRÞ is zero since the potential energy is minimum when atoms
are in their equilibrium positions. Therefore, the deformation energy can be defined by
iW ¼ iV � V0 ¼ 1
4

X
j 6¼i;m 6¼n

V 00abði�jR;m�nRÞði�juaÞðm�nubÞ ð8Þ
If iFa denotes the force acting on the ith atom, then it will be given by
iFa ¼ �
oiW
oiua

¼ �1
2

V 00aaði�jRÞ
o

oiua
½iua � jua�2 ð9Þ
For the antiplane problem with only non-trivial displacement component u2, motion of atoms in any layer perpendicular to
X2-axis represents motion of the crystallite system. Therefore, for a specific in-plane layer in this cubic crystallite system, the
location of an arbitrary ith atom in the layer at X1 ¼ pa and X3 ¼ qa can be denoted by ðXpa

1 ;X
qa
3 Þ. The displacement of the ith
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atom in the layer is denoted by iu2 ¼ uðp;qÞ2 . The displacement of jth atoms near the ith atom can be represented as
ju2 ¼ uðp�l;q�lÞ

2 with l ¼ 0;1. If we consider the force acting on the ith atom from the jth atoms with R ¼ a spacing is the nearest
interaction and the force from the jth atoms with R ¼

ffiffiffi
2
p

a spacing is the next nearest interaction, we have the force acting on
the ith atom as following:
iFa ¼ �V 0022ðaÞ 4uðp;qÞ2 � uðpþ1;qÞ
2 � uðp�1;qÞ

2 � uðp;qþ1Þ
2 � uðp;q�1Þ

2

h i
� V 0022ð

ffiffiffi
2
p

aÞ 4uðp;qÞ2 � uðpþ1;qþ1Þ
2 � uðp�1;q�1Þ

2 � uðpþ1;q�1Þ
2 � uðp�1;qþ1Þ

2

h i
ð10Þ
From the Eq. (10), we find that V 0022ðaÞ and V 0022ð
ffiffiffi
2
p

aÞ plays the role of the force constant, therefore the atomic stiffness of the
near interaction and the next nearest interaction can be represented by linear elastic springs with spring constants as
a1 ¼ V 0022ðaÞ and a2 ¼ V 0022ð

ffiffiffi
2
p

aÞ, respectively.

2.2. Microstructure continuum model

To consider small antiplane deformation in the discrete system, a representative unit cell of the cubic lattice model is con-
sidered, as shown in Fig. 2. In the study, only interactions between the nearest and next-nearest neighbors are considered,
which are represented by linearly elastic springs with spring constants a1 and a2, respectively (Ghatak and Kothari, 1972).
Compared with the simulation with real atomistic potential between atoms, this model is the first-order approximation at a
small strain condition. It should be noted that the springs in Fig. 2 are the translational shear springs due to the shear defor-
mation along X2-direction. The representative cell consists of four sub-cells. In each sub-cell, a local coordinate system is
established. Note that in this representative element, atoms 3, 6, 7, 8, and 9 are not included in the representative cell since
they are included in the adjacent cells. The four local coordinate systems ðxðkÞ1 ; xðkÞ2 ; xðkÞ3 Þwith origins located at the geometrical
centers of the four sub-cells k = 1–4, respectively, are set up so that x1; x2 and x3 are parallel to the global (macro) coordinates
X1;X2 and X3, respectively.

The local antiplane displacements uðkÞ2 in the four subregions in the unit cell can be expanded in power series with respect
to the respective local coordinates as
uðkÞ2 ¼ uðkÞ02 þ /ðkÞ12 xðkÞ1 þ /ðkÞ32 xðkÞ3 ; k ¼ 1;2;3;4 ð11Þ
where the expansion is approximated by being truncated at the linear terms. The accuracy can be improved by involving
higher order terms in Eq. (11). For the antiplane problem, we also have
uðkÞ1 ¼ uðkÞ3 ¼ 0 ð12Þ
It is assumed that local displacement uðkÞ02 of the four sub-cells are values of macrodisplacement U2 at four sub-cells, respec-
tively, i.e.
uð1Þ02 ðX1;X3Þ ¼ U2ðX1;X3Þ

uð2Þ02 � U2ðX1 þ a;X3Þ � U2ðX1;X3Þ þ a
oU2

oX1

uð3Þ02 � U2ðX1;X3 þ aÞ � U2ðX1;X3Þ þ a
oU2

oX3

uð4Þ02 � U2ðX1 þ a;X3 þ aÞ � U2ðX1;X3Þ þ a
oU2

oX1
þ a

oU2

oX3

ð13Þ
Fig. 2. Representative unit cell and the equivalent continuum.
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The kinematic variables uðkÞ02 ;/
ðkÞ
i2 ði ¼ 1;3Þ are required to satisfy the displacement continuity conditions along the bound-

aries shared by the adjacent pairs of the sub-cells. These boundary conditions lead to the following results:
/ð2Þ12

/ð2Þ32

( )
¼ 2 oU2

oX1
�U12

U32

( )
ð14Þ

/ð3Þ12

/ð3Þ32

( )
¼

U12

2 oU2
oX3
�U32

( )
ð15Þ

/ð4Þ12

/ð4Þ32

( )
¼

2 oU2
oX1
�U12

2 oU2
oX3
�U32

( )
ð16Þ
in which
Ui2ðX1;X3Þ � /ð1Þi2 ðX1;X3Þ; i ¼ 1;3 ð17Þ
The deformation energy in each sub-cell can be expressed as
W ð1Þ ¼W1—2 þW1—4 þW1—5 þW2—4 ð18Þ
W ð2Þ ¼W2—3 þW2—5 þW2—6 þW3—5 ð19Þ
W ð3Þ ¼W4—5 þW4—7 þW4—8 þW5—7 ð20Þ
W ð4Þ ¼W5—6 þW5—8 þW5—9 þW6—8 ð21Þ
where superscripts 1, 2, 3, 4 represent the sub-cells, and W1—2;W1—5 . . . denote the total deformation energies due to
antiplane deformation of the springs between atoms 1 and 2 and 1 and 5. . ., respectively. Detailed derivations for
W1—2 and W1—5 are presented in the following to illustrate the procedure. Other terms can be determined in a similar
method.

Consider the deformation energy W1—2 between atoms 1 and 2. The displacements of atom 2 can be obtained from sub-
cell 1 or sub-cell 2. For simplicity, the displacements for atoms 1 and 2 are both taken from sub-cell 1. We have
W1—2 ¼
1
2
a1ð2uð1Þ2 � 1uð1Þ2 Þ

2 ¼ 1
2
a1ða/ð1Þ12 Þ

2 ð22Þ
where su
ðkÞ
2 represents displacement component u2 in the sub-cell k at atom s.

Likewise, the deformation energy between atoms 1 and 5 can be expressed as
W1—5 ¼
1
2
a2ð5uð1Þ2 � 1uð1Þ2 Þ

2 ¼ 1
2
a2ða/ð1Þ12 þ a/ð1Þ32 Þ

2 ð23Þ
The total deformation energy in sub-cell 1 is
W ð1Þ ¼ 1
2
ða1 þ 2a2Þa2½ð/ð1Þ12 Þ

2 þ ð/ð1Þ32 Þ
2� ð24Þ
The deformation energies for other sub-cells have a similar expression as Eq. (24). Based on Eqs. (14)–(16), the kinematic
variables /ðkÞi2 ðk ¼ 2;3;4Þ in sub-cells 2, 3, and 4 can be eliminated and expressed in terms of the kinematic variables of
sub-cell 1. Therefore, the total deformation energy in the representative unit cell can be expressed in terms of U2;Ui2 and
their derivatives. By dividing this total energy with the planar area 4a2, we obtain the deformation energy density W of
the representative cell after some manipulations. We have
W ¼ 1
4a2 W ð1Þ þW ð2Þ þW ð3Þ þW ð4Þ

� �
¼ 1

2
ða1 þ 2a2ÞðE2

12 þ E2
32 þ c2

12 þ c2
32Þ ð25Þ
in which
Ei2 ¼ U2;i; i ¼ 1;3 ð26Þ
is the macrostrain and
ci2 ¼ U2;i �Ui2; i ¼ 1;3 ð27Þ
is the relative strain. These two deformation variables resemble those in Mindlin’s microstructure theory (Mindlin,
1964). This deformation energy function forms the base of the continuum model that represents the discrete lattice
system.

Based on the total deformation energy density, the corresponding Cauthy stresses and the relative stresses can be ob-
tained by
Ri2 ¼
oW
oEi2
¼ ða1 þ 2a2ÞEi2 ð28Þ



G.L. Huang, F. Song / International Journal of Solids and Structures 45 (2008) 5368–5380 5373
and
rR
i2 ¼

oW
oci2
¼ ða1 þ 2a2Þci2 ð29Þ
It is noted that the relative stress rR
i2 vanishes if ci2 is absent and the deformation energy density function reduces to that of

the classical continuum. This reduced model will be referred to as the ‘‘effective modulus” theory.
The kinetic energy density function for the representative cell can be derived from the discrete system based on the local

displacements given by Eq. (11). We obtain
T ¼ m1

4a2
_U2

2 þ
a2

4
ð _U12 þ _U32Þ2

� �
þ m2

4a2
_U2

2 þ
a2

4
ð _U12 � _U32Þ2

� �
ð30Þ
where a dot represents the derivative with respect to time t.
To complete the continuum model, we derive the equations of motion and boundary conditions by the Hamilton’s

principle. Let A be a region of the thin film represented by the continuum model. Then the Hamilton’s principle
states
d
Z t1

t0

Z
A
ðT �WÞdVdt þ

Z t1

t0

Z
S
ðTidUi þ PjidUjiÞdAdt ¼ 0 ð31Þ
in which S is the entire boundary of A, Ti is external traction, and Pji the external couple applied along S. Substituting Eqs. (25)
and (30) in Eq. (31) and perform variations, we obtain the equations of motion:
� 1
2a2 ðm1 þm2Þ€U2 þ ða1 þ 2a2Þ 2

o2U2

oX2
1

þ 2
o2U2

oX2
3

� oU12

oX1
� oU32

oX3

 !
¼ 0 ð32Þ

1
8
ðm1 þm2Þ€U12 þ

1
8
ðm1 �m2Þ€U32 þ ða1 þ 2a2Þ U12 �

oU2

oX1

� 	
¼ 0 ð33Þ

1
8
ðm1 þm2Þ€U32 þ

1
8
ðm1 �m2Þ€U12 þ ða1 þ 2a2Þ U32 �

oU2

oX3

� 	
¼ 0 ð34Þ
The boundary conditions are
T2 ¼ ðRi2 þ rR
i2Þni; Pji ¼ 0 ð35Þ
where ni is the unit vector normal to the boundary surface. It is noted that, for the present continuum model developed
based on the linear displacement expansion of Eq. (11), no couple stress is present.

The equations of motion for the reduced effective modulus theory are readily obtained by requiring ci2 ¼ 0 in the energy
density function. We have
ða1 þ 2a2Þ
o2U2

oX2
1

þ o2U2

oX2
3

 !
¼ 1

2a2 ðm1 þm2Þ€U2 ð36Þ
3. Antiplane wave propagation in an infinite lattice system

To validate the present continuum model, we first consider harmonic antiplane wave propagation in an infinite lattice
system by using both the exact solution and the current microstructure continuum model.

The lattice is assumed to be infinite extent in all three dimensions. The microstructure of the lattice is shown in Fig. 1,
where X1 and X3-directions are defined as in-plane directions and X2-direction is defined as antiplane direction. For the infi-
nite lattice system, the thickness of the lattice system h is assumed to be infinite.

3.1. Exact solution of wave propagation

For the antiplane problem with only non-trivial displacement component u2, motion of atoms in any layer perpen-
dicular to X2-axis represents motion of the lattice system. The X1 and X3-directions are defined as in-plane directions
and the X2-direction is defined as antiplane direction. Therefore, for a specific in-plane layer, the location of an arbitrary
atom in the layer at X1 ¼ pa and X3 ¼ qa can be denoted by ðXpa

1 ;X
qa
3 Þ. The displacement of the atom in the layer is de-

noted by uðp;qÞ2 .
For the unit cell of atoms at X1 ¼ ia and X3 ¼ ja and X1 ¼ ia and X3 ¼ ðjþ 1Þa, the equations of motion can be written as
m1€uði;jÞ2 ¼ �a1 4uði;jÞ2 � uði;jþ1Þ
2 � uði;j�1Þ

2 � uðiþ1;jÞ
2 � uði�1;jÞ

2

� �
� a2 4uði;jÞ2 � uðiþ1;jþ1Þ

2 � uði�1;j�1Þ
2 � uðiþ1;j�1Þ

2 � uði�1;jþ1Þ
2

� �
ð37Þ

m2€uði;jþ1Þ
2 ¼ �a1 4uði;jþ1Þ

2 � uði;jþ2Þ
2 � uði;jÞ2 � uðiþ1;jþ1Þ

2 � uði�1;jþ1Þ
2

� �
� a2 4uði;jþ1Þ

2 � uðiþ1;jþ2Þ
2 � uði�1;jÞ

2 � uðiþ1;jÞ
2 � uði�1;jþ2Þ

2

� �
ð38Þ
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where the mass of the atom at X1 ¼ ia and X3 ¼ ja is assumed to be m1, and the mass of the atom at X1 ¼ ia and X3 ¼ ðjþ 1Þa
is assumed to be m2.

The harmonic antiplane wave along X1-direction assumes the form
uðp;qÞ2 ¼ A1eikðXp
1�ctÞ for the atom m1 ð39Þ

uðp;qþ1Þ
2 ¼ A2eikðXp

1
�ctÞ for the atom m2 ð40Þ
where Xp
1 ¼ pa.

Substituting Eqs. (39) and (40) in Eqs. (37) and (38), we obtain
ðm1x2 � 4a1 � 4a2 þ 4a2 cosðkaÞÞA1 þ ð2a1 þ 2a1 cosðkaÞÞA2 ¼ 0 ð41Þ
ð2a1 þ 2a1 cosðkaÞÞA1 þ ðm2x2 � 4a1 � 4a2 þ 4a2 cosðkaÞÞA2 ¼ 0 ð42Þ
The dispersion equation can be obtained by requiring that the determinant of the coefficient matrix vanishes.

3.2. Continuum model of wave propagation

The microstructure continuum theory presented in Section 2 is now employed to study propagation of antiplane har-
monic waves in the infinite lattice system. Harmonic waves propagating in the X1-direction can be expressed as
U2 ¼ AeikðX1�ctÞ; ð43Þ
U12 ¼ BeikðX1�ctÞ; ð44Þ
U32 ¼ CeikðX1�ctÞ; ð45Þ
where k denotes wave number, c is phase velocity, and A;B;C are unknown constants independent of the macro coordinates
X1;X2 and X3. Substituting Eqs. (43)–(45) in equations of motion (32)–(34), we obtain
� x2

2a2 ðm1 þm2Þ þ 2ða1 þ 2a2Þk2
� �

Aþ ða1 þ 2a2ÞikB ¼ 0 ð46Þ

ða1 þ 2a2ÞikAþ 1
8
ðm1 þm2Þx2 � ða1 þ 2a2Þ

� �
Bþ 1

8
ðm1 �m2Þx2C ¼ 0 ð47Þ

1
8
ðm1 �m2Þx2

� �
Bþ 1

8
ðm1 þm2Þx2 � ða1 þ 2a2Þ

� �
C ¼ 0 ð48Þ
where x ¼ kc denotes the circular frequency.
Eqs. (46)–(48), have non-trivial solutions for A;B;C only if the determinant of the coefficients vanishes. This results in the

dispersion equation:
H1 H2 0
H2 H3 H4

0 H4 H3

�������
������� ¼ 0 ð49Þ
where
H1 ¼ �
x2

2a2 ðm1 þm2Þ þ 2ða1 þ 2a2Þk2

H2 ¼ ða1 þ 2a2Þik

H3 ¼
1
8
ðm1 þm2Þx2 � ða1 þ 2a2Þ

H4 ¼
1
8
ðm1 �m2Þx2
4. Antiplane wave propagation in the ultra-thin film

We now consider harmonic antiplane wave propagation in a plate lattice system, as shown in Fig. 1. Similarly, the X1 and
X3-directions are defined as in-plane directions and the X2-direction is defined as antiplane direction. The coordinate system
is established so that the X1-axis coincides with the top boundary layer of atoms and X3-axis coincides with an arbitrary col-
umn of atoms. The nanoplate is assumed to consist of N þ 1 atom layers with thickness h in the X3-direction. Both the exact
solution and the continuum model will be used for the simulation of wave propagation.

4.1. Exact solution of wave propagation

Consider the ith column of atoms at X1 ¼ ia. The equation of motion for the atom at the top layer ðX3 ¼ 0Þ can be ex-
pressed as
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m1€uði;0Þ2 ¼ �a1ð3uði;0Þ2 � uði;1Þ2 � uðiþ1;0Þ
2 � uði�1;0Þ

2 Þ � a2ð2uði;0Þ2 � uðiþ1;1Þ
2 � uði�1;1Þ

2 Þ ð50Þ
in which the mass of the atom at the top layer is assumed to be m1. Similarly, the equation of motion for the atom at the
bottom layer ðX3 ¼ NaÞ is
m1€uði;NÞ2 ¼ �a1ð3uði;NÞ2 � uði;N�1Þ
2 � uðiþ1;NÞ

2 � uði�1;NÞ
2 Þ � a2ð2uði;NÞ2 � uði�1;N�1Þ

2 � uðiþ1;N�1Þ
2 Þ ð51Þ
where the mass of the atom at the bottom layer is also assumed to be m1 in order to make the lattice system symmetric with
respect to its mid-plane.

The equations of motion for the interior atoms in the ith column are
m€uði;jÞ2 ¼ �a1ð4uði;jÞ2 � uði;jþ1Þ
2 � uði;j�1Þ

2 � uðiþ1;jÞ
2 � uði�1;jÞ

2 Þ � a2ð4uði;jÞ2 � uðiþ1;jþ1Þ
2 � uði�1;j�1Þ

2 � uðiþ1;j�1Þ
2 � uði�1;jþ1Þ

2 Þ ð52Þ
where j ¼ 1;2;3; . . . ;N � 1 and m ¼ m1 if j is an even number and m ¼ m2 otherwise.
For an antiplane harmonic wave propagating in the X1-direction, the displacements can be assumed as
uðp;qÞ2 ¼ AqeikðXp
1
�ctÞ ð53Þ
where Xp
1 ¼ pa. Substitution of Eq. (53) in Eqs. (50)–(52) yields N þ 1 equations for the unknown coefficients vector

A ¼ fA0
;A1

; . . . ;Aj
; . . . ;ANg. The dispersion equation is obtained by requiring that the determinant of the coefficient matrix

vanishes. By solving the systems of equations mentioned above, we can get the corresponding displacement fields of respec-
tive atoms.

4.2. Continuum model of wave propagation in the thin film

The continuum model of antiplane harmonic waves in the thin film is studied in this subsection. The thickness of the thin
film is assumed to be h. Harmonic waves propagating in the X1-direction can be expressed as
U2 ¼ f1ðX3ÞeikðX1�ctÞ ð54Þ

U12 ¼ f2ðX3ÞeikðX1�ctÞ ð55Þ

U32 ¼ f3ðX3ÞeikðX1�ctÞ ð56Þ
where fiðX3Þ are unknown functions. Substituting Eqs. (54)–(56) in the equations of motion (32)–(34), we obtain
1
2a2 ðm1 þm2Þx2 � 2ða1 þ 2a2Þk2
� �

f1 þ 2ða1 þ 2a2Þf 001 � ða1 þ 2a2Þikf2 � ða1 þ 2a2Þf 03 ¼ 0 ð57Þ

ða1 þ 2a2Þikf1 þ
1
8
ðm1 þm2Þx2 � ða1 þ 2a2Þ

� �
f2 þ

1
8
ðm1 �m2Þx2f3 ¼ 0 ð58Þ

ða1 þ 2a2Þf 01 þ
1
8
ðm1 �m2Þx2f2 þ

1
8
ðm1 þm2Þx2 � ða1 þ 2a2Þ

� �
f3 ¼ 0 ð59Þ
where a prime indicates differentiation with respect to X3. By eliminating f2; f3 from Eqs. (57)–(59), the following differential
equation for f1 can be obtained:
ðC1 þ C2Þf 001 � 2C3f 01 þ ðC4 þ C5Þf1 ¼ 0 ð60Þ
where
C1 ¼ 2ðD2
4 � D2

5ÞD2; C2 ¼ D2
2D4

C3 ¼ D2D3D5; C4 ¼ ðD2
4 � D2

5ÞD1; C5 ¼ D2
3D4

D1 ¼
1

2a2 ðm1 þm2Þx2 � 2ða1 þ 2a2Þk2
; D2 ¼ a1 þ 2a2

D3 ¼ ikða1 þ 2a2Þ; D4 ¼
1
8
ðm1 þm2Þx2 � ða1 þ 2a2Þ; D5 ¼

1
8
ðm1 �m2Þx2
The general solutions of Eq. (60) for the function f1 depend on the type of the roots of characteristic equation
ðC1 þ C2Þb2 � 2C3bþ ðC4 þ C5Þ ¼ 0 ð61Þ
By solving the above quadratic equation, the general solution for f1 can be expressed as
f1 ¼ E1eb1X3 þ E2eb2X3 ð62Þ
where b1; b2 are two roots of Eq. (61). The solutions for f2; f3 can be obtained in a similar way.
For this antiplane problem, the traction-free boundary conditions at X3 ¼ 0 and X3 ¼ h lead to
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S1E1 þ S2E2 ¼ 0 ð63Þ
S1E1eb1h þ S2E2eb2h ¼ 0 ð64Þ
where
S1 ¼ 2b1 �
D2D4b1 � D3D5

D2
5 � D2

4

; S2 ¼ 2b2 �
D2D4b2 � D3D5

D2
5 � D2

4

Eqs. (63) and (64) have non-trivial solutions for E1; E2 only when the determinant of the coefficients vanishes. This results in
the dispersion equation:
S1 S2

S1eb1h S2eb2h

����
���� ¼ 0 ð65Þ
The corresponding displacement field (54) can be obtained by substituting the solutions in Eq. (65) into Eqs. (63) and (64)
and solving the eigenvector equations.

5. Numerical simulation

This section concerns numerical simulation of antiplane wave propagation in the different lattice systems, discussed in
Sections 3 and 4. It is well known that in a classical elastic solid, the antiplane wave is non-dispersive. However, antiplane
waves with wavelengths that are comparable to the atomic spacing must be carefully examined if the wave technique is to
be used in measuring material constants. It is noteworthy that, especially in electronic device applications, antiplane wave
frequencies on the order of GHz–THz are now possible for this type of measurement.

5.1. Wave propagation in the infinite lattice system

For the current lattice system, there exist two modes of wave forms. The lower frequency one is the acoustic mode and
the higher frequency one is the optical mode. For the acoustic mode, adjacent atoms move in the same direction (in phase),
and for the optic mode, adjacent atoms move in the opposite direction (out of phase). Fig. 3 shows the comparison of dis-
persion curves for the acoustic mode obtained according to Eqs. (41) and (42) of the exact solution for the lattice systems,
the microstructure continuum model (49), and the effective modulus theory (36), respectively. The parameters used in the
calculation for the cubic structure are a ¼ 1:74� 10�10 m; a1 ¼ 2:02 N=m; a2 ¼ 1:10 N=m, and m2=m1 ¼ 10. The non-dimen-

sional wave velocity c	 ¼ c=
ffiffiffiffi
a2
q0

q
, with q0 ¼

m1þm2
2a2 , and non-dimensional wave number ka are used in the figure. The results of

Fig. 3 show that both the effective modulus theory and the microstructure continuum model yield very good predictions for
the anti-symmetric wave for long waves with ka < 0:2. However, as wave length decreases, the dispersion curve computed
Fig. 3. Dispersion curves for the acoustic mode obtained by the lattice model and continuum model for an infinite medium.
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from the effective modulus theory deviates substantially from the exact curve, while the curve predicted by the microstruc-
ture continuum model is in good agreement with the exact curve even when ka ¼ 1:0. On the other hand if one employs the
effective modulus theory and waves with ka > 0:2 to determine elastic constants of a thin film with the aid of the dispersion
relations, the values of these constants may be significantly overestimated.

Fig. 4 shows the comparison of the non-dimensional angular frequency x	 ¼ x=x0 for the optic mode with x0 ¼
ffiffiffiffiffiffiffiffiffi
a2=q0

p
2a . It

is found that the microstructure continuum model can capture the trend of the phase velocity of the optic wave mode but
the value of the phase velocity even for very low frequency cases. This discrepancy is attributed to the fact that only linear
terms are considered in the local displacements. To better capture the properties of the higher order wave mode, higher or-
der expansion terms in Eq. (11) and the correction factor coefficients must be added in the development of the continuum
model. The detailed development of the higher order microstructure continuum model to capture the higher order wave
mode can be found in a separate publication (Huang and Sun, in press).

5.2. Wave propagation in the plate lattice system

In the subsection, we will focus on the lowest wave mode (acoustic wave mode) for antiplane wave propagation in the plate
lattice system. Fig. 5 shows the comparison of dispersion curves for the acoustic mode obtained by the exact solution for the
nanoplate lattice systems, the microstructure continuum model, and the effective modulus theory, respectively. The parame-
ters used in the computation for the cubic structure area ¼ 1:74� 10�10 m; a1 ¼ 2:02 N=m; a2 ¼ 1:10 N=m; m2=m1 ¼ 10 and
h ¼ 8a. It is expected that the dispersion curve predicted by the present microstructure continuum model shows better agree-
ment with the exact solution than that by the effective modulus theory. However, it is of interest to note that the results by both
the continuum theories and the effective modulus theory show some difference relative to the exact phase velocity even at long
wave lengths. This discrepancy is attributed to the fact both the present continuum theory and the effective modulus theory are
not capable of accounting for the nano scale surface effect on the thin film.

Fig. 6 shows comparisons of dispersion curves for the nanoplate lattice system of thickness h ¼ 20a. Conclusions similar
to those for the results of Fig. 5 can be made here except for phase velocities at long wave lengths, which are found to be in
fairly good agreement with that of the exact lattice model. Consequently, if one wants to use the lowest antiplane wave
mode to determine thin film material properties, some data corrections should be exercised when the thickness of the ul-
tra-thin film is less than 6–7 nm.

Displacement fields will also provide the important information of the antiplane wave propagation, especially for the pre-
diction of the wave motion shape in the ultra-thin films. Displacement fields can be obtained by solving the eigenvector
problem for the lattice model and microstructure continuum model, respectively. Fig. 7 shows the comparison of the nor-
malized antiplane displacement fields across the thickness in the ultra-thin film for the loading frequency ka ¼ 0:525 by
using the lattice model and microstructure continuum model. The material properties used in the calculations are
a ¼ 1:74� 10�10 m; a1 ¼ 2:02 N=m; a2 ¼ 1:10 N=m; m2=m1 ¼ 10 and h ¼ 40a. The normalized amplitude A	 is defined as
A=Amid, where Amid represents the amplitude of the displacement field in the middle of the thin film. As shown in Fig. 7,
Fig. 4. Dispersion curves for the optic mode obtained by the lattice model and continuum model for an infinite medium.



Fig. 5. Dispersion curves for the lowest antiplane wave mode obtained by the lattice model and continuum models for the thin film with eight atom layers.

Fig. 6. Dispersion curves for the lowest antiplane wave mode obtained by the lattice model and continuum models for the ultra-thin film with 20 atom
layers.
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the displacement fields predicted by the lattice model are represented by two discontinuous curves. This is due to the mass
difference in the lattice model. It can be also found that the current microstructure continuum model can still give very rea-
sonable prediction about the displacement fields in the ultra-thin films.

6. Concluding remarks

In this paper, we have examined high-frequency harmonic antiplane wave propagation in ultra-thin films using the clas-
sical continuum (effective modulus) theory and a microstructure continuum theory. This microstructure continuum theory



Fig. 7. Normalized displacement fields predicted by the lattice model and the microstructure continuum theory.

G.L. Huang, F. Song / International Journal of Solids and Structures 45 (2008) 5368–5380 5379
is developed by introducing local kinematic variables to express these local displacements. The accuracy of the theory is ver-
ified by comparing the results with those of the lattice model. It was found that the effective modulus theory is inadequate to
describe waves of short wavelengths propagating in the ultra-thin films. However, the microstructure continuum theory can
provide good predictions of both dispersive wave velocities and displacement fields, which is useful for the prediction of
properties of nanomaterials. Based on the theory, further study of dynamic non-linear wave propagation in the nanostruc-
tured materials will be conducted by using the real atomistic potential.
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