46 research outputs found

    Kinetics of crystallization of FeB-based amorphous alloys studied by neutron thermo-diffractometry

    Get PDF
    Kinetics of crystallization of two amorphous alloys, Fe70Cr10B20 and Fe80Zr10B10, have been followed up by neutron thermodiffractometry experiments performed in the two axis diffractometer D20 (ILL, Grenoble). The structural changes are directly correlated with the temperature dependence of the magnetization. Fe70Cr10B20 crystallizes following a two-step process: an eutectic crystallization of alfa-Fe (bcc) and the metastable tetragonal phase (Fe0.8Cr0.2)3B followed by another eutectic transformation to the stable phase (Fe0.75Cr0.25)2B and more segregation of alfa-Fe. These tetragonal phases are magnetically anisotropic, giving rise to a large increase of the coercivity. This behaviour is similar to that of Fe80B20 alloys, with Cr atoms replacing the Fe positions in both crystalline phases. Fe80Zr10B10 shows also a two-step process in which two polymorphic transformations take place.Comment: 3 pages. Proceedings International Workshop Non-Crystalline Solids 2006, Gijon (Spain

    Temperature and time dependent structure of the molten Ni81P19 alloy by neutron diffraction

    Get PDF
    The temperature and time dependent structure of molten NiP alloy of eutectic composition has been studied by neutron diffraction. Ni particles were found to exist in the melt at temperatures at least up to about 150 degrees above liquidus. The amount varies reversibly as temperature increases but decays slowly with time. Remarkably, particles still exist even after that the melt has been kept more than 30 h at different temperatures in the molten state. The static structure factor and the pair distribution function obtained at 1050 °C are presented

    Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction

    Get PDF
    The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {\eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure

    Arsenite sorption and co-precipitation with calcite

    Get PDF
    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on the atomic displacement of As atoms along [0001] direction extend those published by Cheng et al., (1999) on calcite surface. This study provides a molecular-level explanation for why As(III) is trapped by calcite in industrial treatments.Comment: 9 page

    Neutron powder diffraction study at high temperature of the Ruddlesden-Popper phase Sr3Fe2O6 + δ

    No full text
    The crystal and oxygen defect structure of the n = 2 Ruddlesden-Popper phase Sr3Fe2O6 + δ have been studied by in situ high temperature neutron powder diffraction in the temperature range 20 ≤ T ≤ 900 °C in air. The analysis of the neutron diffraction data revealed the presence of structural oxygen vacancies on both the O(1) sites linking the octahedra along the c axis and the O(3) sites in the FeO2 planes of the perovskite layers. The oxygen vacancies on the O(3) site increase with temperature up to ∼ 0.25 per formula unit at T = 900 °C. This result supports previously proposed oxygen ion diffusion mechanism in Sr3Fe2O6 + δ that involves the migration of vacancies from an O(3) site to an adjacent O(1) site. The total linear expansion along the c axis αc = 17.7(5) · 10- 6 K- 1 mainly affects the perovskite block while the width of the rock salt layers remains stable with temperature. The total volumetric expansion αV / 3 = 20(1) · 10- 6 K- 1 is around the average of the TEC values (14.8-27.1 K- 1) reported for the perovskite system La1 - xSrxCo1 - yFeyO3 - δ.Fil: Prado, Fernando Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Mogni, Liliana Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Cuello, G.J.. Institut Laue Langevin; FranciaFil: Caneiro, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Arsenic removal by gypsum and calcite in lacustrine environments

    No full text
    After the closure of the coal mining activities in the Massif Central range, France, several lakes were formed as a consequence of mine collapse. The old mines, located at the bottom of lakes, are certified sources of As and heavy metals. During a time period of one year, we have monitored the water column of one of these lakes in order to identify geochemical process controlling water quality dominated by precipitation of gypsum and calcite. We have therefore performed laboratory experiments to study how As is trapped during calcite and gypsurn precipitation in presence of As III and V respectively

    Chemical isomeric effects on propanol glassy structures

    No full text
    corecore