11 research outputs found

    Deconfinement at finite chemical potential

    Full text link
    In a confining, renormalisable, Dyson-Schwinger equation model of two-flavour QCD we explore the chemical-potential dependence of the dressed-quark propagator, which provides a means of determining the behaviour of the chiral and deconfinement order parameters, and low-energy pion observables. We find coincident, first order deconfinement and chiral symmetry restoration transitions at \mu_c = 375 MeV. f_\pi is insensitive to \mu until \mu \approx \mu_0 = 0.7 mu_c when it begins to increase rapidly. m_\pi is weakly dependent on \mu, decreasing slowly with \mu and reaching a minimum 6% less than its \mu=0 value at \mu=\mu_0. In a two-flavour free-quark gas at \mu=\mu_c the baryon number density would be approximately 3 \rho_0, where \rho_0=0.16 fm^{-3}; while in such a gas at \mu_0 the density is \rho_0.Comment: 11 pages, 3 figures, epsfig.sty, elsart.st

    Interference Effects in Relativistic Deuteron Electrodisintegration

    Full text link
    We extend the relativistic plane--wave impulse approximation formalism to incorporate a specific class of relativistic interference effects for use in describing inclusive electrodisintegration of 2^2H. The role of these ``exchange'' terms for the various response functions accessible in parity--conserving and --violating inclusive processes is investigated and shown, especially for the latter, to have important consequences for experiment. An extension to a simple quasi--deuteron model is also considered.Comment: 28 pages (latex), 15 figures available upon request, TRI-PP-93-101 and MIT-CTP#224

    Effective Hamiltonians with Relativistic Corrections I: The Foldy--Wouthuysen transformation versus the direct Pauli reduction

    Get PDF
    Two different methods of obtaining ``effective 2×22\times 2 Hamiltonians'' which include relativistic corrections to nonrelativistic calculations are discussed, the standard Foldy--Wouthuysen transformation and what we call the ``direct Pauli reduction''. We wish to investigate under which circumstances the two approaches yield the same result. Using a generic interaction with harmonic time dependence we show that differences in the corresponding effective S--matrices do arise beyond first--order perturbation theory. We attribute them to the fact that the use of the direct reduction effective Hamiltonian involves the additional approximation of neglecting contributions from the negative--energy intermediate states, an approximation which is unnecessary in the Foldy--Wouthuysen case as there the 4×44\times 4 Hamiltonian does not connect positive-- and negative--energy states. We conclude that at least in the cases where the relativistic Hamiltonian is known, using the direct Pauli reduction effective Hamiltonian introduces spurious relativistic effects and therefore the Foldy--Wouthuysen reduction should be preferred.Comment: TRIUMF preprint TRI-PP-93-1

    Polarized Deformed Nuclei Studied via Coincidence Polarized Electron Scattering: The case of 21 Ne

    Full text link
    Coincidence reactions of the type \svec{A}(\svec{e},e'N)B involving the scattering of polarized electrons from deformed polarized targets are discussed within the context of the plane--wave impulse approximation. A general expression for the polarized spectral function for transitions leaving the residual nucleus in discrete states is presented. General properties and angular symmetries exhibited by the polarization observables are discussed in detail. Results for unpolarized cross sections as well as for polarization ratios (asymmetries) are obtained for typical quasi--free kinematics. The dependences of the polarization observables on the bound neutron momentum, target polarization orientation, nuclear deformation and value of the momentum transfer qq are discussed in detail for various different kinematical situations.Comment: 37 pages in Plain TeX, MIT-CTP-209

    Nonperturbative Renormalization and the QCD Vacuum

    Full text link
    We present a self consistent approach to Coulomb gauge Hamiltonian QCD which allows one to relate single gluon spectral properties to the long range behavior of the confining interaction. Nonperturbative renormalization is discussed. The numerical results are in good agreement with phenomenological and lattice forms of the static potential.Comment: 23 pages in RevTex, 4 postscript figure

    Matter degrees of freedom and string breaking in Abelian projected quenched SU(2) QCD

    Get PDF
    In the Abelian projection the Yang--Mills theory contains Abelian gauge fields (diagonal degrees of freedom) and the Abelian matter fields (off-diagonal degrees) described by a complicated action. The matter fields are essential for the breaking of the adjoint string. We obtain numerically the effective action of the Abelian gauge and the Abelian matter fields in quenched SU(2) QCD and show that the Abelian matter fields provide an essential contribution to the total action even in the infrared region. We also observe the breaking of an Abelian analog of the adjoint string using Abelian operators. We show that the adjoint string tension is dominated by the Abelian and the monopole contributions similarly to the case of the fundamental particles. We conclude that the adjoint string breaking can successfully be described in the Abelian projection formalism.Comment: 16 pages, 10 figures, 2 table

    Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD

    Get PDF
    A detailed study is made of four dimensional SU(2) gauge theory with static adjoint ``quarks'' in the context of string breaking. A tadpole-improved action is used to do simulations on lattices with coarse spatial spacings asa_s, allowing the static potential to be probed at large separations at a dramatically reduced computational cost. Highly anisotropic lattices are used, with fine temporal spacings ata_t, in order to assess the behavior of the time-dependent effective potentials. The lattice spacings are determined from the potentials for quarks in the fundamental representation. Simulations of the Wilson loop in the adjoint representation are done, and the energies of magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are calculated, which set the energy scale for string breaking. Correlators of gauge-fixed static quark propagators, without a connecting string of spatial links, are analyzed. Correlation functions of gluelump pairs are also considered; similar correlators have recently been proposed for observing string breaking in full QCD and other models. A thorough discussion of the relevance of Wilson loops over other operators for studies of string breaking is presented, using the simulation results presented here to support a number of new arguments.Comment: 22 pages, 14 figure

    Casimir scaling of SU(3) static potentials

    Get PDF
    Potentials between static colour sources in eight different representations are computed in four dimensional SU(3) gauge theory. The simulations have been performed with the Wilson action on anisotropic lattices where the renormalised anisotropies have been determined non-perturbatively. After an extrapolation to the continuum limit we are able to exclude any violations of the Casimir scaling hypothesis that exceed 5% for source separations of up to 1 fm.Comment: 12 pages, 10 figures, RevTeX, v2: 1 reference added, more explanation about advantages of anisotrop
    corecore