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In the Abelian projection the Yang-Mills theory contains Abelian gauge fields~diagonal degrees of freedom!
and the Abelian matter fields~off-diagonal degrees! described by a complicated action. The matter fields are
essential for the breaking of the adjoint string. We obtain numerically the effective action of the Abelian gauge
and the Abelian matter fields in quenchedSU(2) QCD and show that the Abelian matter fields provide an
essential contribution to the total action even in the infrared region. We also observe the breaking of an Abelian
analogue of the adjoint string using Abelian operators. We show that the adjoint string tension is dominated by
the Abelian and the monopole contributions similarly to the case of the fundamental particles. We conclude that
the adjoint string breaking can successfully be described in the Abelian projection formalism.

DOI: 10.1103/PhysRevD.70.014506 PACS number~s!: 11.15.Ha, 12.38.Gc, 14.80.Hv
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I. INTRODUCTION

The mechanism of color confinement in QCD is one
the most important nonperturbative problems in the quan
field theory. One of the most promising approaches to
problem is based on the existence of dual objects, ca
monopoles, which are condensed in the confinement ph
This approach—known as the dual superconductor hyp
esis @1#—is realized with the help of the so-called Abelia
projection @2# of SU(N) color degrees of freedom t
U(1)N21 degrees of freedom.

The model was shown to be quite successful in explain
the confinement of the fundamental charges such as qu
~see, e.g., reviews in@3#!. Abelian and monopole contribu
tions to the interquark potential are dominant in the lon
range region of quenched QCD@4,5#. An infrared effective
monopole action has been derived in the continuum li
after a block-spin transformation of monopole currents@6,7#.
It is a quantum perfect action described by monopole c
rents. The condensation of monopoles in the confinem
phase was observed in various numerical approaches@6,8#.
In the language of monopole currents condensation imp
the formation of a percolating cluster studied both nume
cally @9# and analytically@10#.

However, this mechanism has a serious problem eve
quenched QCD. Although the ’t Hooft scenario describes
confinement of quarks correctly, this scenario predicts a
the existence of string tension for the adjoint charges~glu-
ons! in the infrared region. On the other hand, gluon char
must be screened at large distances due to the presen
gluons in the QCD vacuum. This screening-confinem
problem was extensively discussed in recent publicati
@11#.

The problem of the screening of the adjoint charges
quenchedSU(N) QCD has also been discussed in Ref.@12#.
The paper provides arguments that the relevant quantit
the confinement mechanism is not the Abelian monopo
but theZ(N) center vortices which can explain the screen
0556-2821/2004/70~1!/014506~10!/$22.50 70 0145
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problem @13#. In our study we pursue a different approa
based on the dual superconductor model.

Consider the screening in a confining Abelian model w
charge-2 matter fields~take, for example, the Abelian Higg
model with compact gauge fields!. The presence of doubly
charged matter fields screens the confining interaction
tween the external particles with opposite double charg
This happens due to the pair creation from the vacuum
certain separations between the external charges. As a re
the potential between the particles flattens at some distan
It should be stressed that the problem is not only to exp
the flattening of the potential but also to show the line
behavior of the potential in the intermediate region. On
other hand, the charge-1 external fields remain unscreene
this model. Namely, the potential is linearly rising at lar
distances.

The standard model of the dual superconductor
quenched QCD ignores the existence of off-diagonal gluo
However, these gluons have a charge 2 with respect to
Abelian subgroup and they may explain the flattening of
intergluon potential which is usually studied with the help
the adjoint Wilson loop. On the other hand, the introducti
of new degrees of freedom—off-diagonal gluons—sho
not violate the already achieved success of the explanatio
the quark confinement in this model. Indeed, quarks have
charge 1 and doubly charged gluons cannot screen th1

These and related issues were discussed in Ref.@14# for
quenched as well as for fullSU(N) QCD.

From the point of view of a realization of the~modified!
dual superconductor scenario it seems that we have to k
all charge-2 Abelian Wilson loops in the effective actio
written by the Abelian link fields to reproduce the screeni
of charge 2. Indeed, the theory in terms of Abelian link fiel

1However, we may expect a renormalization of the tension of
string spanned between the quarks due to the presence of do
charges.
©2004 The American Physical Society06-1
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or Abelian monopole currents alone becomes highly nonlo
if we integrate out all off-diagonal gluon fields after an Ab
lian projection. Needless to say, such an Abelian effec
action is useless. The same problem is more serious in
real full QCD, since a fundamental charge is also screene
this case.

The aim of this paper is to calculate numerically the
fective action of quenched QCD within the Abelian proje
tion formalism. Contrary to previous calculations of this kin
we include also the doubly charged off-diagonal gluon fie
in the effective action and we show that their contribution
essential and thus cannot be neglected. We also calc
correlators of the adjoint Polyakov loops in the Abelian fo
malism and observe the screening of a properly defined
tential between static adjoint sources.

The plan of the paper is the following. In Sec. II w
discuss how the screening and confinement problem
solved qualitatively in the framework of Abelian dynamic
Section III is devoted to an investigation of the Abelian a
tion for the Abelian gauge and matter fields obtained by
inverse Monte Carlo method. In Sec. IV we discuss the
tential between the adjoint (Q52) charges within the Abe
lian projection formalism. We show numerically that a pro
erly defined Abelian potential shows screening of theQ52
charges. Moreover, we observe the Abelian and monop
dominance for the adjoint string tension. Our conclusions
presented in the last section.

II. STRING BREAKING IN ABELIAN
PROJECTED THEORY

The partition function of the Abelian effective theory o
quenchedSU(2) QCD in the infrared region may be ap
proximated in the Villain-like form@15#

ZQ@J#5E
2p

p

Du (
nPZ(c2)

3e2(1/4p2)[(du12pn),DD(du12pn)] 1 iQ(u,J), ~1!

whereD is a differential operator:

D'ā1b̄D211ḡD. ~2!

This operator contains a local self-interaction term, the C
lomb term described by the inverse Laplacian,D21, and ad-
ditional interactions between nearest neighbors. The c
pling constantsā, b̄, and ḡ were calculated numerically in
Ref. @15#. To simplify the notation we use the differentia
form formalism on the lattice@16#.

The partition function~1! can be rewritten as a strin
model @15#

ZQ@J#} (
ds1QJ
s5Z(c2)

e2p2(s,(DD)21s), ~3!

where we have neglected perimeter terms. This model d
not contain dynamical matter fields and therefore the str
01450
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variables is always closed on the external currentJ. There-
fore there is no source for string breaking in this model.

Now let us consider the off-diagonal gluons. The Wils
action of quenchedSU(2) QCD is

S5
b

2 (
s,m,n

Tr Umn~s!,

Umn~s!5Um~s!Un~s1m̂ !Um
† ~s1 n̂ !Un

†~s!, ~4!

whereUm(s) is theSU(2) gauge field.
It is convenient to parametrize theSU(2) link variable

Um(s) asUm(s)5cm(s)um(s) where

cm~s!5S cosfm~s! i sinfm~s!e2 iwm(s)

i sinfm~s!eiwm(s) cosfm~s!
D ,

um~s!5S eium(s) 0

0 e2 ium(s)D .

Here u, w, andf are independent variables defined in t
regions2p<um(s), wm(s),p, and 0<fm(s),p/2. The
field u behaves as aU(1) gauge field while the fieldw
corresponds to the phase of the off-diagonal gluon field
cause, under an Abelian gauge transformation

VAbel~s!5diag~eia(s),e2 ia(s)! ~5!

they behave as follows:

um~s!→um~s!2]ma~s![um~s!1a~s!2a~s1m̂ !,

wm~s!→wm~s!12a~s!. ~6!

The variablefm(s) is not affected by theU(1) gauge
transformation. After an Abelian projection we can integra
this variable out without harming theU(1) content of the
model. In order to get an insight of possible forms of inte
actions between the Abelian gauge and Abelian matter fie
we replace the averages of cosfm(s) and sinfm(s) by their
mean values:

cosfm~s!→^cosfm~s!&[c, sinfm~s!→^sinfm~s!&[s,
~7!

where c and s are functions of theSU(2) coupling con-
stantb.

As the Abelian projection, we use the maximal Abelia
gauge which is defined by a maximization of the function

R5
1

2 (
s,m

Tr@s3Ũm~s!s3Ũm
† ~s!#[(

s,m
@2 cos2fm~s!21#,

~8!

with respect to theSU(2) gauge transformationsUm(s)
→Ũm(s)5V(s)Um(s)V†(s1m̂). The functional~8! is in-
variant under residualU(1) gauge transformations~5!. The
6-2
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local condition corresponding to maximization~8! can be
written in the continuum limit as the differential equatio
(]m1 igAm

3 )(Am
1 2 iAm

2 )50.
The maximization of the functional~8! corresponds to the

minimization of the f variable. Thus the observation o
Refs.@17,18# made for the mean values~7!,

c.1, s!c, ~9!

does not come as a surprise. These relations hold in a w
region of the coupling constantb.

Following Ref.@18# we rewrite the action of the model~4!
in terms of the variablesu, w and f with the help of the
definitions~5!. Applying Eq.~7! to the original action we ge

1

2
Tr Umn~s!

5c4cos@Qmn~s!#2c2s2cos@Qmn~s!2Hmn~s!2Cmn~s!#

2c2s2cos@Qmn~s!1Hnm~s!2Cmn~s!#

1c2s2cos@Qmn~s!1Hnm~s!#1c2s2cos@Qmn~s!

2Hmn~s!1Hnm~s!2Cmn~s!#1c2s2cos@Qmn~s!

2Hmn~s!#1c2s2cos@Qmn~s!1Cmn~s!#

1s4cos@Qmn~s!2Hmn~s!1Hnm~s!22Cmn~s!#,

~10!

where we have denoted theU(1) gauge invariant variable
as follows:

Qmn~s!5um~s!1un~s1m̂ !2um~s1 n̂ !2un~s!, ~11!

Hmn~s!52um~s!1wn~s!2wn~s1m̂ !, ~12!

Cmn~s!5wm~s!2wn~s!. ~13!

The variableQ is theU(1) plaquette for the gauge fieldu,
the variableH describes the interaction of the matter fieldw
with the gauge fieldu, and the variableC corresponds to the
self-interaction of the matter field. The validity of the mea
field approximation based on a self-consistent substitu
~7! is not known. When we perform thef integration, we
generally get an effective action in terms ofQmn , Hmn , and
Cmn . Below we use numerical method to find this effecti
action.

A few remarks about the action~10! are now in order.~i!
From Eq.~9! one can immediately observe that the lead
contribution to the action is provided by the first QED-lik
term depending on the variablesu only. The coupling be-
tween the gauge fieldu and the matter fieldw is suppressed
and the self-interaction of the matter field is suppressed e
further. ~ii ! The action~10! should acquire corrections from
the Faddeev-Popov determinant resulting from the fixing
the maximal Abelian gauge. This determinant is an ess
tially nonlocal functional and the leading local terms we
calculated in Ref.@18#.
01450
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Let us assume for simplicity the following effective a
tion:

Seff.5S(1)~u!1S(2)~u,w!,

S(2)~u,w!52F1~H !2F2~H8!2F3~C!, ~14!

where we putH5Hmn(s), H85Hnm(s), C5Cmn(s), and
F1 , F2 , F3 are periodic functions. Following Ref.@14# we
rewrite the corresponding partition functionZ with the exter-
nal sourceJ as follows:

ZQ@J#5E
2p

p

DuDwe2Seff.1 iQ(u,J)

5E
2p

p

DuDwe2S(1)(u)2S(2)(u,w)1 iQ(u,J)

5E
2p

p

Due2S(1)(u)1 iQ(u,J)

3F E
2p

p

DweF1(H)1F2(H8)1F3(C)G . ~15!

The part in the square brackets can be expanded in a Fo
series:

@•••#5E
2p

p

Dw (
i 51,2,3

n( i )PZ(c2)

I 1~n(1)!I 2~n(2)!I 3~n(3)!

3ei (H,n(1))1 i (H8,n(2))1 i (C,n(3)), ~16!

wheren( i ), i 51,2,3, are integers and the lattice tensorsH,
H8, n(1), n(2) sum only for m.n becauseH, H8 are not
antisymmetric contrary to (C,n(3)).

Integrating overw and summing overn(3) one can rewrite
Eq. ~16! as

@•••#5 (
d j 50

j PZ(c1)

w~ j !e2i (u, j ), ~17!

wherew( j ) are certain weights for the closed currentj which
is defined from the variablesn(1) andn(2):

j m~s!5 (
n(,m)

nmn
(1)~s!1 (

n(.m)
nnm

(2)~s!. ~18!

The general form of Eqs.~17! and~18! follows from the fact
that the fieldsw are doubly charged and from the gau
invariance of the expression under the exponential func
in Eq. ~16!. We also give a detailed derivation of Eqs.~17!
and ~18! in Appendix A.

To simplify further considerations let us rewrite the fir
term in Eq.~14! in the Villain form as in Eq.~1!. Then we
get, for the partition function~15!,
6-3
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ZQ@J#5E
2p

p

Du (
nPZ(c2)

(
d j 50

j PZ(c1)

w~ j !expH 2
1

4p2

3„~du12pn!,DD~du12pn!…1 i ~u,2j 1QJ!J .

Analogously to Eq.~3! we get the following model for the
string variables dual to the gauge fieldu:

ZQ@J#5 (
d j 50

j PZ(c1)

(
ds52 j 1QJ

sPZ(c2)

w~ j !exp$2p2~s,~DD !21s!%.

~19!

The string model~19! is different from the model~3! by the
presence of the doubly charged currents representing
contribution of the off-diagonal gluons@the first sum in Eq.
~19!#. The second sum in this equation is over the integ
valued string variable which has the dynamical currentj as
its boundary.

If the external charge has a unit value,Q51, then the
dynamical currentj cannot screen the external currentQJ
and therefore the string always spans on the trajectorie
the external currents,ds52 j 1QJÞ0. However, if the ex-
ternal current is doubly charged,Q52, then there exists the
dynamical currentj 52J such thatds50. This state breaks
the string: when the distance between the external charg
large enough the state withj 52J provides a dominant con
tribution to the partition function.

III. EFFECTIVE ACTION FOR GAUGE
AND MATTER FIELDS

In this section we calculate numerically the effective a
tion for the Abelian gauge and the matter fields in quenc
SU(2) QCD. We have chosen a trial action in the form

Seff~u,w!5a1S1~u!1a2S2~u!1a3S3~u!1b1S4~u,w!,

~20!

wherea i , i 51,2,3, andb1 are the coupling constants to b
determined numerically.

The functionalsSi , i 51,2,3, describe the action of th
gauge fieldu:

S152 (
s,mÞn

@cosQmn~s!#, ~21!

S252 (
s,mÞn

@cos 2Qmn~s!#, ~22!

S351 (
s,mÞn

@sinQmn~s!sinQmn~s1m̂ !#, ~23!

where the plaquette variableQ is given in Eq. ~11!. The
01450
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actionS1 is the leading term in the Abelian action~10! cor-
responding to quenchedSU(2) QCD in the mean-field ap
proximation. The partsS2,3 are also included because the
may arise naturally from the integration overf.

As an interaction term between the gauge,u, and the
matter,w, fields we adopt, for simplicity,

S452 (
s,mÞn

$cos@Qmn~s!2Hmn~s!#

1cos@Qmn~s!1Hnm~s!#%, ~24!

where the plaquette variableH is given in Eq.~12!. We have
not included other terms from Eq.~10! into the trial action
because it turns out that the minimal form of the action~20!
describes the numerical data with a good accuracy.

We have used the standard Monte Carlo procedure to g
erate the gauge field configurations on the 324 lattice. The
SU(2) coupling constant was chosen in the rangeb
52.1–2.7. In order to express dimensionful quantities
physical units we have followed Ref.@15#, providing the
values of such quantities in units of theSU(2) string tension.
The lattice spacinga at a given value of the gauge couplin
b can be the expressed through the~calculated numerically!
lattice string tension, s lat , using the relation a(b)
5As lat(b)/sphys. For illustration purposes we have asso
ated the value of the SU~2! string tension with the phenom
enological value of the string tension in the real QCD,s
5(440 MeV). Then the length scaleb50.45 fm corre-
sponds approximately to the lengthb51.0sphys

21/2 in terms of
the SU(2) string tension.

We have generated 100 configurations of the gauge fi
for each value of the coupling constant and then used
simulated annealing method@5# to fix the maximal Abelian
gauge. The couplingsa i , i 51,2,3, andb1 were determined
by solving the Schwinger-Dyson equations@20#. We describe
the details of this method in Appendix B. To make a furth
improvement of our results towards the continuum limit w
used also a block-spin transformation for theSU(2) link
variableUm(s): We apply the block-spin transformation t
the link variableUm(s):

Um8 ~s8!5
1

N S Um~s!Um~s1m̂ !1g (
n(Þm)

Un~s!Um~s1 n̂ !

3Um~s1m̂1 n̂ !Un
†~s12m̂ ! D , ~25!

which is visually represented in Fig. 1. HereN[N(U) is the

FIG. 1. The visualization of the blockspin transformation, E
~25!.
6-4
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FIG. 2. The parametersa i , i
51,2,3, and b1 for different
blocking stepsn vs the scale pa-
rameterb. The fits by Eq.~26! are
shown by the dashed lines.
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normalization factor which is introduced to make the fat li
belonging to theSU(2) group. The weight parameterg was
set tog50.5.

The couplings obtained in this way are depicted in Fi
2~a!–2~d!. The couplinga1 shows a perfect scaling since th
coupling constant depends only on the physical lengthb ~and
it does not depend onn anda separately!. For the couplings
a2 , a3, andb1 this feature does not work: the original da
~no block-spin transformation,n51) is quite different from
the cases where the block-spin transformation was donen
.1) while the coupling constants withn.1 scale almost
perfectly. One can make a conclusion that the original d
corresponds to very small values ofb where the effective
action takes more complicated form than Eq.~20!.

In order to quantitatively characterize the dependence
the coupling constants on the scale factorb we have fitted the
data by a function

f ~b!5C01C1exp$2~b/b0!n%, ~26!

whereC0,1, n, andb0 are the fitting parameters. In our fit
we have excluded the data without the block-spin trans
mation,n51, for all coupling constants except fora1 case.
The best fit curves are plotted in Fig. 2 as the dashed li
and the best fit parameters are shown in Table I.

We have found that in the case ofa1 andb1 the param-
etern is very close to 2, and therefore in these fits we fix

TABLE I. The parameters for the exponential fits~26! of the
couplingsa i , i 51,2,3, andb1.

Coupling C0 C1 b0 @fm# n

a1 0.066~10! 1.20~2! 0.61~1! 2
a2 0 0.32~2! 0.231~7! 1
a3 0 20.28~3! 0.46~3! 1.8~2!

b1 0.064~5! 0.30~1! 0.69~2! 2
01450
.

(

ta

of

r-

s,

d

this parameter,n52. Similarly, we have also fixedn51 for
a2 andC050 for a2,3. Note that the fit cannot describe th
couplinga1 accurately at small scales,b<0.2 fm. A similar
deviation can be found for the couplinga3. We expect that at
small scales the Abelian action becomes much more com
cated than the trial action~20!, ~21!, ~22!, ~23!, ~24! which
we used to solve the Schwinger-Dyson equations. A sm
similar effect is observed for the effective monopole acti
obtained by inverse Monte Carlo methods@15#.

The functionalS1, Eq. ~21!, makes the leading contribu
tion to the action since the corresponding couplinga1 is the
largest. The actionsS2 and S3, in addition to the expected
action S1, play an essential role at small scales since
corresponding couplingsa2 and a3 are nonvanishing. The
actionS4, which describes the interaction of the matter fiel
with the gauge fields, has a nonvanishing coupling both
small and large scales similarly toS1. Moreover, according
to Table I the couplingsa1 and b1, corresponding to these
parts of the total action, have relatively large lengthsb0 com-
pared to the coupling constantsa2 and a3. Thus, at large
scales,bAs@1, the effective Abelian action for theSU(2)
gauge theory can be approximated as a sum of the QED
action for the gauge field,S1(u), and the interaction term
S4(u,w).

We interpret the results obtained in this section as
manifestation of the Abelian dominance~nonvanishing
dominant couplinga1) and the importance of the off
diagonal ~matter! degrees of freedom~nonvanishing cou-
pling b1). The matter fields are essential for the breaking
the adjoint string. From the point of view of further analyt
cal study the results of this section are qualitative becaus
order to make a quantitative analytical predictions at a fin
value of the scaleb we need much more terms in the tri
action ~20! than we have imposed. Indeed, in Ref.@15# the
monopole contribution to the string tension has been ca
lated using the effective monopole action. The monopole
6-5
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tion was obtained numerically and it turns out that in order
get a correct analytical result for the string tension o
should take into account not only the most local terms in
effective monopole action but also a series of the nonlo
terms. The situation with the effective action for the Abeli
fields ~20! should be similar to the case of the monopo
action since these actions are related to each other@15#. Nev-
ertheless, the adjoint string breaking canquantitativelybe
discussed within the numerical approach on the basis
maximal Abelian gauge fixing. This topic is discussed in t
next section.

IV. QÄ2 POTENTIAL FROM POLYAKOV LOOPS

The easiest way to observe numerically the string bre
ing effect is to consider the theory at finite temperature a
define the potential with the help of the Polyakov loop co
elators@14,19#:

^P~xW !P†~yW !&5e2V(xW2yW )/T. ~27!

HereT is temperature.
The adjoint Polyakov loopP1 is defined as follows:

P15
1

3
TrS)

i PC
D1@Ui # D 5

1

3
~4p0

221!, ~28!

where the color vectorp5p01 ipW •sW defines the fundamenta
Polyakov loop, P1/251/2 Trp, p5) i PCUi , and C is the
straight line parallel to the temperature direction. The adjo
Polyakov loop~28! contains the charged term,Q52, and
neutral term,Q50:

PQ525
2

3
~p0

22p3
2!, PQ505

1

3
~2p0

212p3
221!. ~29!

The Abelian dominance in the most general sense me
that a non-Abelian observable can be calculated with g
accuracy with the help of the corresponding Abelian opera
in a suitable Abelian projection. The Abelian dominance w
first established for the tension of the chromoelectric str
spanned between the fundamental sources@4#. In this case
the non-Abelian Wilson~or Polyakov! loop was replaced by
its Abelian counterpart.

However, in the case of the adjoint potential we imme
ately encounter a problem@21#: in the Abelian projection the
Q52 charged component of the Wilson loop shows the a
law while the neutralQ50 component is constant. There
fore, strictly speaking, a straightforward Abelian projecti
of the adjoint operators leads to vanishing Abelian str
tension. The simplest way to overcome this difficulty is
introduce the obvious prescription for the adjoint operat
proposed originally in Ref.@22#. Namely, one should disre
gard theQ50 component of the Wilson loop operator an
consider theQ52 Abelian component of the Wilson loop a
the Abelian analogue of the full~non-Abelian! loop. In Ref.
@22# some numerical arguments in favor of the validity
this prescription were given. Below we follow this recip
and show that the string breaking effect can indeed be s
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in the Q52 Abelian and monopole components of the p
tential. Moreover, we have observed the Abelian and mo
pole dominance for the adjoint string tension.

After the Abelian projection theQ52 component be-
comes

PQ52
ab 5cos 2qC , qC5(

i PC
u i , ~30!

where qC enters theQ51 Abelian Polyakov loop,P1/2
ab

5cosqC .
We calculate numerically the static potential between

adjoint particles using the Polyakov loop correlators~27!. We
use four types of the Polyakov loops: non-Abelian, Abelia
monopole, and photon Polyakov loops:

PQ525p0
22p3

2 , PQ52
ab 5cos 2qC ,

PQ52
mon 5cos 2qC mon, PQ52

ph 5cos 2qC ph,
~31!

respectively.
The functionsqC mon andqC ph represent the contribution

to the Polyakov loop coming from the monopole curren
and the photon fields, respectively@4,5#:

qC mon52(
t

(
xW8,t8

D~xW2xW8,t2t8!]m8 Q̄m4~xW8,t8!, ~32!

qC ph522p(
t

(
xW8,t8

D~xW2xW8,t2t8!]m8 nm4~xW8,t8!,

~33!

where the variablesQ̄P(2p,p) and nPZ are extracted
from the Abelian plaquette variable,Qmn(s)[um(s)1un(s
1m̂)2um(s1 n̂)2un(s)5Q̄mn(s)12pnmn(s). Here D(s)
is the inverse Laplacian,]m8 ]mD(s)52d0,s .

We numerically measured the potential between the st
adjoint sources on the 16334 lattice atb52.2 ~confinement
phase! using 2000 configurations. The Abelian, monopo
and the photon components of the potential were meas
in the maximal Abelian gauge. In order to reduce the sta
tical errors in our calculations of the potentials we have
plied the hypercubic blocking@23# procedure to ensemble
of the non-Abelian, Abelian, and photon gauge fields. W
have not applied the blocking to the monopole contribut
of the potential because in this particular case the block
makes the data noisier. The hypercubic blocking method
briefly described in Appendix C.

We present the numerical results in Fig. 3. One c
clearly see that all potentials become flat in the infrared
gion, clearly indicating the presence of string breaking. T
non-Abelian potential as well as the Abelian and the mo
pole contributions contain linear pieces at small enough
tances while the photon contribution to the potential does
contain a linear part. These observations are in qualita
agreement with the Abelian~monopole! dominance hypoth-
esis@4#.
6-6
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To make a quantitative characterization of the potent
we fit our data by a function

expH 2
Vfit~R!

T J 5expH 2
V012m

T J 1expH 2
V01Vstr~R!

T J ,

~34!

where we have chosen the string potential in the simp
form, Vstr(R)5sQ52R. The fitting parameters are the a
joint string tensionsQ52, the mass parameterm, and the
self-energyV0. The first term in Eq.~34! corresponds to the
broken string state and the parameterm, is the mass of a stat
of ‘‘external heavy adjoint source’’—‘‘light gluon.’’ The sec
ond term is the unbroken string state. Here we neglect o
states including the string excitations.

We perform fits in the range starting from two lattic
spacings,r min52a. The reason for this restriction is twofold
~i! the hypercubic blocking modifies the potential at sm
distances;~ii ! in our fitting function ~34! the perturbative
Coulomb interaction~which is essential at small distances! is
not included.2

The best fit functions are shown in Fig. 3 by the dash
lines and the best fit parameters are presented in Tabl
One can clearly see the existence of the Abelian domina

2Nevertheless, we have checked the effect of the Coulomb in
action shifting the string potential asVstr(R)→Vstr(R)2a/R,
wherea is an additional fitting parameter. We have observed t
the best fit values of the parameterssQ52 andm had a shift of about
1%–2% which is of the order of the statistical errors for the
parameters.

FIG. 3. The potential between adjoint static sources and
Abelian, the monopole, and the photon contributions to it. The
by the function~34! are shown by the solid lines.

TABLE II. The parameters for the fits of the potential by th
function ~34!. Heres[s1/2(T50).

Type sQ52 /s m/As

Non-Abelian 2.49~3! 1.28~1!

Abelian 2.33~3! 1.84~1!

Monopole 1.94~1! 2.27~2!
01450
ls

st

er

l

d
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ce

for the string tension:sQ52
ab '0.94sQ52, wheresQ52 is the

string tension extracted from the non-Abelian Polyakov lo
correlator. The monopole dominance can also be obser
sQ52

mon '0.83sQ52
ab '0.78sQ52. The monopole dominance i

less manifest than the Abelian dominance in agreement w
precise observations atb52.5115 in the case of fundament
external sources@5#.

In Ref. @5# the potential between the staticQ52 Abelian
sources has been measured in the zero-temperature case
spite string breaking not being observed in this case, the r
betweenQ52 andQ51 Abelian string has been measure
sQ52 /sQ5152.23(5). Taking into account that the ratio be
tween Q51 Abelian and SU(2) string tensions is@5#,
sQ52 /s50.92(4), we get theprediction of Ref.@5# for the
ratio sQ52 /s52.42(12). We observe a very good agre
ment with our result,sQ52 /s52.33(3), given in Table II.

According to our numerical results the Abelian and mon
pole contributions to the masses of the heavy-light adjo
particles,m, do not coincide with the corresponding ma
measured with the help of the non-Abelian Polyakov loo
On the other hand, we do not expect either Abelian or mo
pole dominance to hold in this case since these types
dominance are usually valid for infrared~nonlocal! quantities
in accordance with the ideas of Ref.@1#. Because of the loca
nature of the massm, the Abelian and monopole dominanc
may not work in this case.

The absence of the Abelian dominance for the mass
rameterm implies the absence of Abelian dominance for t
string breaking distance. Indeed, the simplest definition
the string breaking distanceRsb corresponds to a value ofR
at which both terms in Eq.~34! are equal. For the linea
string potentialVstr5sQ52R, this distance is defined asRsb
52m/sQ52. In other words, the string breaking distance
the distance where the energy of the string,sQ52Rsb, is
equivalent to the energy of the two heavy-light states, 2m.
Since the Abelian dominance works only for the string te
sionsQ52, the string breaking distanceRsb should not be an
Abelian- and monopole-dominated quantity.

V. CONCLUSIONS

We have calculated the effective action for the Abeli
gauge and the Abelian charged matter fields in the maxi
Abelian projection of quenchedSU(2) QCD. We have
shown that in the infrared limit the contribution of the matt
field to the action is nonvanishing. Thus we have shown
the qualitative level that the matter fields, carrying Abeli
chargeQ52, must lead to adjoint string breaking. To che
this effect on the quantitative level we have studied the
tential between adjoint static sources as well as the Abe
and monopole contributions to this potential. We have o
served that string breaking~flattening of the adjoint poten
tial! manifests itself in Abelian and monopole contributio
similarly to the non-Abelian case. Moreover, we show th
the adjoint string tension is dominated by the Abelian a
monopole contributions analogously to the case of fun
mental particles. Thus we conclude that adjoint string bre
ing can qualitatively be described in the Abelian projecti
formalism. The key role in adjoint string breaking in th

r-

t

e

e
s
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Abelian picture is played by the off-diagonal gluons whi
become doubly charged Abelian vector fields in the Abel
projection.
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APPENDIX A: DERIVATION OF EQ. „17…

In this appendix we present a detailed derivation of E
~17!:

E
2p

p

DweF1(H)1F2(H8)1F3(C)5 (
d j 50

j PZ(c1)

w~ j !e2i (u, j ).

~A1!

The Fourier transformation applied to each of the terms
the left-hand side~LHS! of this equation gives

E
2p

p

DweF1(H)1F2(H8)1F3(C)

5E
2p

p

Dw)
s

(
i 51,2,3

nmn
( i ) PZ

F)
i 51

3

I i„nmn
( i ) ~s!…GeiF(w,n( i )),

~A2!

where I i are the Fourier components ofeFi and F is the
phase:

F~w,n( i )!5(
s

F (
m.n

@Hmn~s!nmn
(1)~s!1Hnm~s!nmn

(2)~s!#

1 (
mÞn

Cmn~s!nmn
(3)~s!G . ~A3!

Using the definitions~11!–~13! we get

F~w,n( i )!5(
s

(
m.n

$2um~s!nmn
(1)~s!12un~s!nmn

(2)~s!

1wn~s!@nmn
(1)~s!2nmn

(1)~s2m̂ !22nmn
(3)~s!#

1wm~s!@nmn
(2)~s!2nmn

(2)~s2 n̂ !12nmn
(3)~s!#%.

~A4!

Integration over the fieldw gives two constraints

nmn
(1)~s!2nmn

(1)~s2m̂ !22nmn
(3)~s!50,

nmn
(2)~s!2nmn

(2)~s2 n̂ !12nmn
(3)~s!50, ~A5!
01450
n

y
S

cs

.

n

which lead to

nmn
(1)~s!2nmn

(1)~s2m̂ !1nmn
(2)~s!2nmn

(2)~s2 n̂ !50. ~A6!

Equation~A4! gives the natural definition for the current o
the matter fields:

j m~s!5 (
n(,m)

nmn
(1)~s!1 (

n(.m)
nnm

(2)~s!. ~A7!

Note that as a result of the constraint~A6!, the current~A7!
is closed:

d j [(
m

]m8 j m~s!5 (
mÞn

@nmn
(1)~s!2nmn

(1)~s2m̂ !1nmn
(2)~s!

2nmn
(2)~s2 n̂ !#50.

Combining Eqs.~A2!, ~A4!, and ~A7!, we get the RHS of
Eq. ~A1! with

v~ j !5 (
i 51,2,3

nmn
( i ) PZ

)
s

F)
i 51

3

I i~nmn
( i ) ~s!!GdS j m~s!2 (

n(,m)
nmn

(1)~s!

1 (
n(.m)

nnm
(2)~s! D d~nmn

(1)~s!2nmn
(1)~s2m̂ !

22nmn
(3)~s!!d~nmn

(2)~s!2nmn
(2)~s2 n̂ !12nmn

(3)~s!!.

~A8!

APPENDIX B: SCHWINGER-DYSON EQUATIONS

Consider a model of the gauge fieldu. The expectation
value of an arbitrary operatorO(u) measured at the en
semble$u i% of the gauge fieldsu is

^O~u!&5E DuO~u!e2S(u)5)
i
E

2p

p

du iO~$u i%!e2S($u i %).

~B1!

Shifting one of the link fieldsu i 0
at the link i 0 by an infini-

tesimal valuee we get

)
i
E

2p

p

du iO~$u i%!e2S($u i %)

5 )
iÞ i 0

E
2p

p

du iE
2p

p

du i 0
O~u i 0

,$u i% iÞ i 0
!e2S(u i 0

,$u i % iÞ i 0
)

→ )
iÞ i 0

E
2p

p

du iE
2p1e

p1e

du i 0
O~u i 0

1e,$u i% iÞ i 0
!

3e2S(u i 0
1e,$u i % iÞ i 0

)

6-8
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5 )
iÞ i 0

E
2p

p

du iE
2p

p

du i 0H O~u i 0
,$u i% iÞ i 0

!

3e2S(u i 0
,$u i % iÞ i 0

)1e
]

]u i 0

@O~u i 0
,$u i% iÞ i 0

!

3e2S(u i 0
,$u i % iÞ i 0

)#1O~e2!J . ~B2!

The requirement that this shift not change the partition fu
tion gives the Schwinger-Dyson equation

)
iÞ i 0

E
2p

p

du iE
2p

p

du i 0

]

]u i 0

@O~u i 0
,$u i% iÞ i 0

!e2S(u i 0
,$u i % iÞ i 0

)#

5E Du
]

]u i 0

@O~u!e2S(u)#50, ~B3!

which can also be rewritten in the form

K ]O~u!

]u i 0
L 2K O~u!

]S~u!

]u i 0
L 50. ~B4!

To determine the parameters of the trial action~20!–~24!
we solve Eq.~B4! with the following set of operators:

OI5
]SI

]um~s!
~ I 51,2,3,4!, O55

]S4

]wm~s!
. ~B5!

The expectation values of these operators give a set of
Schwinger-Dyson equations:

K ]2SI

]um~s!2L 5 (
J51

3

aJK ]SI

]um~s!

]SJ

]um~s!L
1b1K ]S4

]um~s!

]SJ

]um~s!L ~ I 51,2,3,4!,

~B6!

K ]2S4

]wm~s!2L 5b1K S ]S4

]wm~s! D
2L . ~B7!

Since we have five equations~B6!, ~B7! to determine four
independent couplingsa i , i 51,2,3, andb1, the system of
equations~B6!, ~B7! is overdefined. Thus we find the cou
i,
ta

.

01450
-

ve

plings with the help of Eq.~B6! and then use Eq.~B7! as a
consistency check. We find that for the original fields t
LHS of Eq.~B7! is approximately 10% larger than the RHS
However, after applying the block-spin transformation t
discrepancy becomes much smaller~it becomes of the orde
of the statistical errors!, and the solution of Eqs.~B6!, ~B7!
becomes self-consistent.

APPENDIX C: HYPERCUBIC BLOCKING

The hypercubic blocking~hyp! procedure is a version o
the smearing method which allows us to reduce the noise
the lattice gauge fields@23#. As a result the statistical error
of ensemble averages of various operators are reduced.
is replacing gauge link fields,Um(s), by ‘‘fat links’’ Vm(s),
according to the following scheme:

Vm~s!5
1

k1
F ~12a1!Um~s!1

a1

6 (
nÞ6m

Ṽn;m~s!

3Ṽm;n~s1 n̂ !Ṽn;m
† ~s1m̂ !G ,

Ṽm;n~s!5
1

k2
F ~12a2!Um~s!

1
a2

4 (
rÞ6m,6n

V̄r;mn~s!V̄m;nr~s1 r̂ !

3V̄r;mn
† ~s1m̂ !G ,

V̄m;nr~s!5
1

k3
F ~12a3!Um~s!1

a3

2

3 (
sÞ6m,6n,6r

Us~s!Um~s1ŝ !Us
†~s1m̂ !G ,

~C1!

whereki , i 51,2,3, are chosen in such a way that the ma
ces~C1! belong to theSU(2) group. We choose the param
eters of the hyp,a1 , a2 , a3P@0,1#, following Ref. @23#:
a150.75, a250.60, anda350.30. At these values the
smoothing of the gauge field configurations is most efficie
d
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