1,290 research outputs found
Astrophysical Axion Bounds
Axion emission by hot and dense plasmas is a new energy-loss channel for
stars. Observational consequences include a modification of the solar
sound-speed profile, an increase of the solar neutrino flux, a reduction of the
helium-burning lifetime of globular-cluster stars, accelerated white-dwarf
cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We
review and update these arguments and summarize the resulting axion
constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3
figure
Testing SUSY
If SUSY provides a solution to the hierarchy problem then supersymmetric
states should not be too heavy. This requirement is quantified by a fine tuning
measure that provides a quantitative test of SUSY as a solution to the
hierarchy problem. The measure is useful in correlating the impact of the
various experimental measurements relevant to the search for supersymmetry and
also in identifying the most sensitive measurements for testing SUSY. In this
paper we apply the measure to the CMSSM, computing it to two-loop order and
taking account of current experimental limits and the constraint on dark matter
abundance. Using this we determine the present limits on the CMSSM parameter
space and identify the measurements at the LHC that are most significant in
covering the remaining parameter space. Without imposing the LEP Higgs mass
bound we show that the smallest fine tuning (1:13) consistent with a relic
density within the WMAP bound corresponds to a Higgs mass of 1142 GeV.
Fine tuning rises rapidly for heavier Higgs.Comment: 12 pages, 7 figures; references added, figures updated for extended
parameter space sca
Search for solar Kaluza-Klein axions in theories of low-scale quantum gravity
We explore the physics potential of a terrestrial detector for observing
axionic Kaluza-Klein excitations coming from the Sun within the context of
higher-dimensional theories of low-scale quantum gravity. In these theories,
the heavier Kaluza-Klein axions are relatively short-lived and may be detected
by a coincidental triggering of their two-photon decay mode. Because of the
expected high multiplicity of the solar axionic excitations, we find
experimental sensitivity to a fundamental Peccei-Quinn axion mass up to
eV (corresponding to an effective axion-photon coupling GeV) in theories with 2 extra
dimensions and a fundamental quantum-gravity scale of order 100
TeV, and up to eV (corresponding to GeV) in theories with 3 extra dimensions and
TeV. For comparison, based on recent data obtained from lowest
level underground experiments, we derive the experimental limits: GeV and GeV in the
aforementioned theories with 2 and 3 large compact dimensions, respectively.Comment: 19 pages, extended version, as to appear in Physical Review
Photon mixing in universes with large extra-dimensions
In presence of a magnetic field, photons can mix with any particle having a
two-photon vertex. In theories with large compact extra-dimensions, there
exists a hierachy of massive Kaluza-Klein gravitons that couple to any photon
entering a magnetic field. We study this mixing and show that, in comparison
with the four dimensional situation where the photon couples only to the
massless graviton, the oscillation effect may be enhanced due to the existence
of a large number of Kaluza-Klein modes. We give the conditions for such an
enhancement and then investigate the cosmological and astrophysical
consequences of this phenomenon; we also discuss some laboratory experiments.
Axions also couple to photons in the same way; we discuss the effect of the
existence of bulk axions in universes with large extra-dimensions. The results
can also be applied to neutrino physics with extra-dimensions.Comment: 41 pages, LaTex, 6 figure
Theta angle versus CP violation in the leptonic sector
Assuming that the axion mechanism of solving the strong CP problem does not
exist and the vanishing of theta at tree level is achieved by some
model-building means, we study the naturalness of having large CP-violating
sources in the leptonic sector. We consider the radiative mechanisms which
transfer a possibly large CP-violating phase in the leptonic sector to the
theta parameter. It is found that large theta cannot be induced in the models
with one Higgs doublet as at least three loops are required in this case. In
the models with two or more Higgs doublets the dominant source of theta is the
phases in the scalar potential, induced by CP violation in leptonic sector.
Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking
parameter A_l generates the corrections to the theta angle already at one loop.
These corrections are large, excluding the possibility of large phases, unless
the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure
Axion Radiation from Strings
This paper revisits the problem of the string decay contribution to the axion
cosmological energy density. We show that this contribution is proportional to
the average relative increase when axion strings decay of a certain quantity
which we define. We carry out numerical simulations of the
evolution and decay of circular and non-circular string loops, of bent strings
with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the
case of string loops and of vortex-antivortex pairs, decreases by
approximately 20%. In the case of bent strings, remains constant
or increases slightly. Our results imply that the string decay contribution to
the axion energy density is of the same order of magnitude as the
well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure
Dynamical properties of the unitary Fermi gas: collective modes and shock waves
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an
infinite s-wave inter-atomic scattering length. First we introduce an efficient
Thomas-Fermi-von Weizsacker density functional which describes accurately
various static properties of the unitary Fermi gas trapped by an external
potential. Then, the sound velocity and the collective frequencies of
oscillations in a harmonic trap are derived from extended superfluid
hydrodynamic equations which are the Euler-Lagrange equations of a
Thomas-Fermi-von Weizsacker action functional. Finally, we show that this
amazing Fermi gas supports supersonic and subsonic shock waves.Comment: 9 pages, 3 figures, invited talk at the International Workshop
"Critical Stability 2011" (Erice, October 2011), to be published in the
journal Few Body System
Electroweak and Dark Matter Constraints on a Z' in Models with a Hidden Valley
We consider current precision electroweak data, Z' searches and dark matter
constraints and analyse their implications for an extension of the SM that
includes an extra U(1)' massive gauge boson and a particular hidden sector
("hidden valley") with a confining (QCD-like) gauge group. The constraints on
the Z' with arbitrary Z-Z' kinetic mixing coming from direct searches and
precision tests of the Standard Model are analysed and shown to lead to a lower
limit of 800 GeV on its mass. Renormalisable interactions involving the Z'
probe the physics of the hidden valley sector which contains a pseudoscalar
dark matter candidate. We find that dark matter constraints place an upper
bound on the mass of the Z' of O(10) TeV. A TeV mass scale is needed for the
hidden valley states, and the Sommerfeld factor for p-wave dark matter
annihilation is found significantly to suppress the allowed parameter space of
the model.Comment: 35 pages, 14 figure
A supernova constraint on bulk majorons
In models with large extra dimensions all gauge singlet fields can in
principle propagate in the extra dimensional space. We have investigated
possible constraints on majoron models of neutrino masses in which the majorons
propagate in extra dimensions. It is found that astrophysical constraints from
supernovae are many orders of magnitude stronger than previous accelerator
bounds. Our findings suggest that unnatural types of the "see-saw" mechanism
for neutrino masses are unlikely to occur in nature, even in the presence of
extra dimensions.Comment: Minor changes, matches the version to appear in PR
Reconstructing Neutrino Properties from Collider Experiments in a Higgs Triplet Neutrino Mass Model
We extend the minimal supersymmetric standard model with bilinear R-parity
violation to include a pair of Higgs triplet superfields. The neutral
components of the Higgs triplets develop small vacuum expectation values (VEVs)
quadratic in the bilinear R-parity breaking parameters. In this scheme the
atmospheric neutrino mass scale arises from bilinear R-parity breaking while
for reasonable values of parameters the solar neutrino mass scale is generated
from the small Higgs triplet VEVs. We calculate neutrino masses and mixing
angles in this model and show how the model can be tested at future colliders.
The branching ratios of the doubly charged triplet decays are related to the
solar neutrino angle via a simple formula.Comment: 19 pages, 4 figures; one formula corrected, two author's names
corrected; some explanatory comments adde
- …