45 research outputs found
Neutrino Masses, Mixing and New Physics Effects
We introduce a parametrization of the effects of radiative corrections from
new physics on the charged lepton and neutrino mass matrices, studying how
several relevant quantities describing the pattern of neutrino masses and
mixing are affected by these corrections. We find that the ratio omega = sin
theta / tan theta_atm is remarkably stable, even when relatively large
corrections are added to the original mass matrices. It is also found that if
the lightest neutrino has a mass around 0.3 eV, the pattern of masses and
mixings is considerably more stable under perturbations than for a lighter or
heavier spectrum. We explore the consequences of perturbations on some flavor
relations given in the literature. In addition, for a quasi-degenerate neutrino
spectrum it is shown that: (i) starting from a bi-maximal mixing scenario, the
corrections to the mass matrices keep tan theta_atm very close to unity while
they can lower tan theta_sol to its measured value; (ii) beginning from a
scenario with a vanishing Dirac phase, corrections can induce a Dirac phase
large enough to yield CP violation observable in neutrino oscillations.Comment: 14 pages, 21 figures. Uses RevTeX4. Added several comments and
references. Final version to appear in PR
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Efficacy and safety of combined piroxicam, dexamethasone, orphenadrine, and cyanocobalamin treatment in mandibular molar surgery
Third molar extraction is a common procedure frequently accompanied by moderate or severe pain, and involves sufficient numbers of patients to make studies relatively easy to perform. The aim of the present study was to determine the efficacy and safety of the therapeutic combination of 10 mg piroxicam, 1 mg dexamethasone, 35 mg orphenadrine citrate, and 2.5 mg cyanocobalamin (Rheumazin®) when compared with 20 mg piroxicam alone (Feldene®) in mandibular third molar surgery. Eighty patients scheduled for removal of the third molar were included in this randomized and double-blind study. They received (vo) Rheumazin or Feldene 30 min after tooth extraction and once daily for 4 consecutive days. Pain was determined by a visual analogue scale and by the need for escape analgesia (paracetamol). Facial swelling was evaluated with a measuring tape and adverse effects and patient satisfaction were recorded. There was no statistically significant difference in facial swelling between Rheumazin and Feldene (control group). Both drugs were equally effective in the control of pain, with Rheumazin displaying less adverse effects than Feldene. Therefore, Rheumazin appears to provide a better risk/benefit ratio in the mandibular molar surgery. Since the side effects resulting from nonsteroidal anti-inflammatory drug administration are a severe limitation to the routine use of these drugs in clinical practice, our results suggest that Rheumazin can be a good choice for third molar removal treatment
Involvement of Plant Hormones and Plant Growth Regulators on in vitro Somatic Embryogenesis
In spite of the importance attained by somatic embryogenesis and of the many studies that have been conducted on this developmental process, there are still many aspects that are not fully understood. Among those features, the involvement of plant hormones and plant growth regulators on deTermining the conversion of somatic onto embryogenic tissues, and on allowing progression and maturation of somatic embryos, are far away from being completely comprehended. Part of these difficulties relies on the frequent appearance of contradictory results when studying the effect of a particular stimulus over a specific stage in somatic embryogenesis. Recent progress achieved on understanding the interaction between exogenously added plant growth regulators over the concentration of endogenous hormones, together with the involvement of sensitivity of the tissues to particular hormone groups, might help clarifying the occurrence of divergent patterns in somatic embryogenesis, and in tissue culture in general. The aspects described above, emphasizing on the effect of the concentration of plant hormones and of the addition of plant growth regulators during the different phases of somatic embryogenesis, will be reviewed in this paper. Citations will be limited to review articles as much as possible and to individual articles only in those cases in which very specific or recent information is presented.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro para Investigaciones en Granos y Semillas (CIGRAS
Long-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments. © 2020, The Author(s)