10 research outputs found

    Ice giant magnetospheres

    Get PDF
    The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'

    The case for a New Frontiers-class Uranus Orbiter:System science at an underexplored and unique world with a mid-scale mission

    Get PDF
    Current knowledge of the Uranian system is limited to observations from the flyby of Voyager 2 and limited remote observations. However, Uranus remains a highly compelling scientific target due to the unique properties of many aspects of the planet itself and its system. Future exploration of Uranus must focus on cross-disciplinary science that spans the range of research areas from the planet's interior, atmosphere, and magnetosphere to the its rings and satellites, as well as the interactions between them. Detailed study of Uranus by an orbiter is crucial not only for valuable insights into the formation and evolution of our solar system but also for providing ground truths for the understanding of exoplanets. As such, exploration of Uranus will not only enhance our understanding of the ice giant planets themselves but also extend to planetary dynamics throughout our solar system and beyond. The timeliness of exploring Uranus is great, as the community hopes to return in time to image unseen portions of the satellites and magnetospheric configurations. This urgency motivates evaluation of what science can be achieved with a lower-cost, potentially faster-turnaround mission, such as a New Frontiers–class orbiter mission. This paper outlines the scientific case for and the technological and design considerations that must be addressed by future studies to enable a New Frontiers–class Uranus orbiter with balanced cross-disciplinary science objectives. In particular, studies that trade scientific scope and instrumentation and operational capabilities against simpler and cheaper options must be fundamental to the mission formulation

    The Case for a New Frontiers-Class Uranus Orbiter: System Science at an Underexplored and Unique World with a Mid-scale Mission

    Get PDF
    Current knowledge of the Uranian system is limited to observations from the flyby of Voyager 2 and limited remote observations. However, Uranus remains a highly compelling scientific target due to the unique properties of many aspects of the planet itself and its system. Future exploration of Uranus must focus on cross-disciplinary science that spans the range of research areas from the planet's interior, atmosphere, and magnetosphere to the its rings and satellites, as well as the interactions between them. Detailed study of Uranus by an orbiter is crucial not only for valuable insights into the formation and evolution of our solar system but also for providing ground truths for the understanding of exoplanets. As such, exploration of Uranus will not only enhance our understanding of the ice giant planets themselves but also extend to planetary dynamics throughout our solar system and beyond. The timeliness of exploring Uranus is great, as the community hopes to return in time to image unseen portions of the satellites and magnetospheric configurations. This urgency motivates evaluation of what science can be achieved with a lower-cost, potentially faster-turnaround mission, such as a New Frontiers–class orbiter mission. This paper outlines the scientific case for and the technological and design considerations that must be addressed by future studies to enable a New Frontiers–class Uranus orbiter with balanced cross-disciplinary science objectives. In particular, studies that trade scientific scope and instrumentation and operational capabilities against simpler and cheaper options must be fundamental to the mission formulation

    Plasma Sources in Planetary Magnetospheres: Mercury

    Full text link

    Automated force-free flux rope identification

    Get PDF
    We describe a method developed to automatically identify quasi force-free magnetotail flux ropes from in situ spacecraft magnetometer data. The method locates significant (greater than 1σ) deflections of the north-south component of the magnetic field coincident with enhancements in other field components. The magnetic field data around the deflections are then processed using Minimum Variance Analysis (MVA) to narrow the selection down to those that exhibit the characteristics of flux ropes. The subset of candidates that fulfills the requirements are then compared to a cylindrical, linear (constant-α) force-free model. Those that can be well approximated as force free are then accepted. The model fit also provides a measure of the physical parameters that describe the flux rope (i.e., core field and radius). This process allows for the creation of a repeatable, consistent catalog of flux ropes. Automation allows a greater volume of data to be covered, saving time and allowing the exploration of potential selection biases. The technique is applied to MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) magnetometer data in the Hermean magnetotail and successfully locates flux ropes, some of which match previously known encounters. Assumptions of the method and potential future applications are discussed

    Saturn's dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics

    Get PDF
    We present a comprehensive study of the magnetic field and plasma signatures of reconnection events observed with the Cassini spacecraft during the tail orbits of 2006. We examine their “local” properties in terms of magnetic field reconfiguration and changing plasma flows. We also describe the “global” impact of reconnection in terms of the contribution to mass loss, flux closure, and large-scale tail structure. The signatures of 69 plasmoids, 17 traveling compression regions (TCRs), and 13 planetward moving structures have been found. The direction of motion is inferred from the sign of the change in the Bξ component of the magnetic field in the first instance and confirmed through plasma flow data where available. The plasmoids are interpreted as detached structures, observed by the spacecraft tailward of the reconnection site, and the TCRs are interpreted as the effects of the draping and compression of lobe magnetic field lines around passing plasmoids. We focus on the analysis and interpretation of the tailward moving (south-to-north field change) plasmoids and TCRs in this work, considering the planetward moving signatures only from the point of view of understanding the reconnection x-line position and recurrence rates. We discuss the location spread of the observations, showing that where spacecraft coverage is symmetric about midnight, reconnection signatures are observed more frequently on the dawn flank than on the dusk flank. We show an example of a chain of two plasmoids and two TCRs over 3 hours and suggest that such a scenario is associated with a single-reconnection event, ejecting multiple successive plasmoids. Plasma data reveal that one of these plasmoids contains H+ at lower energy and W+ at higher energy, consistent with an inner magnetospheric source, and the total flow speed inside the plasmoid is estimated with an upper limit of 170 km/s. We probe the interior structure of plasmoids and find that the vast majority of examples at Saturn show a localized decrease in field magnitude as the spacecraft passes through the structure. We take the trajectory of Cassini into account, as, during 2006, the spacecraft's largely equatorial position beneath the hinged current sheet meant that it rarely traversed the center of plasmoids. We present an innovative method of optimizing the window size for minimum variance analysis (MVA) and apply this MVA across several plasmoids to explore their interior morphology in more detail, finding that Saturn's tail contains both loop-like and flux rope-like plasmoids. We estimate the mass lost downtail through reconnection and suggest that the apparent imbalance between mass input and observed plasmoid ejection may mean that alternative mass loss methods contribute to balancing Saturn's mass budget. We also estimate the rate of magnetic flux closure in the tail and find that when open field line closure is active, it plays a very significant role in flux cycling at Saturn

    Plasma Sources in Planetary Magnetospheres: Mercury

    Get PDF
    International audienceNot Availabl

    The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?

    No full text

    A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres

    No full text

    What Controls the Structure and Dynamics of Earth’s Magnetosphere?

    No full text
    corecore