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Abstract We describe a method developed to automatically identify quasi force-free magnetotail
flux ropes from in situ spacecraft magnetometer data. The method locates significant (greater than 1𝜎)
deflections of the north-south component of the magnetic field coincident with enhancements in other
field components. The magnetic field data around the deflections are then processed using Minimum
Variance Analysis (MVA) to narrow the selection down to those that exhibit the characteristics of flux ropes.
The subset of candidates that fulfills the requirements are then compared to a cylindrical, linear (constant-𝛼)
force-free model. Those that can be well approximated as force free are then accepted. The model fit also
provides a measure of the physical parameters that describe the flux rope (i.e., core field and radius). This
process allows for the creation of a repeatable, consistent catalog of flux ropes. Automation allows a greater
volume of data to be covered, saving time and allowing the exploration of potential selection biases. The
technique is applied to MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging)
magnetometer data in the Hermean magnetotail and successfully locates flux ropes, some of which match
previously known encounters. Assumptions of the method and potential future applications are discussed.

1. Introduction

Magnetic reconnection is a ubiquitous process throughout the magnetized plasmas of the solar system. It is a
fundamental mechanism by which energy can be transferred from magnetic fields to the surrounding plasma.
In the context of a planetary magnetosphere, reconnection is most commonly observed at the magnetopause
and in the magnetotail current sheet. Reconnection at the magnetopause can cause mass and flux to be added
to the magnetospheric system (from the solar wind), while reconnection of the adjacent antiparallel fields at
the magnetotail current sheet can result in the loss of mass and/or magnetic flux from the system.

In two dimensions, the presence of one or more reconnection x lines on closed field lines leads to the genera-
tion of magnetic islands, or loops [Schindler, 1974]. At the center of a magnetic loop the field strength is zero.
When considering three-dimensional systems, the formation of magnetic loops requires precisely antiparallel
fields. At Earth and Mercury the magnetic fields within the northern and southern lobes of the magnetotail
are often found to be sheared: a result of the interaction between the solar wind and the magnetosphere
[Cowley, 1981]. The presence of a shear generates a component of the magnetic field in the azimuthal direc-
tion across the current sheet; this can act as a guide field during reconnection, potentially resulting in the
formation of flux ropes [Hughes and Sibeck, 1987]; however, this is still an active area of research [e.g., Borg
et al., 2012]. Flux rope-type plasmoids consist of a series of nested helical magnetic fields forming a cylindrical
structure [Lepping et al., 1990].

On the magnetospheric scale reconnection forms part of a process by which plasma, magnetic flux, and
energy can be transported from the dayside magnetopause into the magnetotail known as the Dungey cycle
[Dungey, 1961]. In this cycle magnetospheric flux is opened at the planet’s dayside magnetopause via recon-
nection with the interplanetary magnetic field in the impinging solar wind. The newly generated open field
lines, which map from the planet to the solar wind, are swept across the polar regions into the magnetotail
lobes. Meanwhile, reconnection in the magnetotail current sheet can close the oppositely directed lobe fields.
The cycle is completed as the closed field lines convect around the flanks to return to the dayside of the planet.

As the closest planet to the Sun, and possessing a relatively small magnetosphere (compared to the other
magnetized planets), Mercury is particularly susceptible to variations in the solar wind, changes that can
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drive the Dungey cycle. Due to the small spatial scales involved, the cycle operates over dramatically shorter
timescales, of the order of ∼2 to 3 min [Siscoe et al., 1975; Slavin et al., 2010; Sun et al., 2015], compared to ∼1
to 3 h at Earth [Akasofu, 1964; Baker et al., 1996; Huang, 2002]. Similarly, the average duration of magnetotail
flux rope observations with the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Rang-
ing) spacecraft at Mercury was found to be 0.74 s [DiBraccio et al., 2015], much shorter than the 30 s to 2 min
durations observed at the Earth [Ieda et al., 1998; Slavin et al., 2003a].

Historically, surveys of plasmoids and flux ropes in Earth’s magnetotail have been performed by visual inspec-
tion of spacecraft data [e.g., Scholer et al., 1984; Richardson et al., 1987; Moldwin and Hughes, 1992; Ieda et al.,
1998; Slavin et al., 2003a]. Criteria based on the magnetic field and local plasma environment were developed
and applied by eye to create self-consistent catalogs. Similarly, several studies of flux ropes in the magne-
totail of Mercury have been performed [Slavin et al., 2009, 2012; DiBraccio et al., 2015]. Unlike at the Earth,
where high-resolution plasma data are generally available, these studies have relied more heavily on the mag-
netometer data to identify these structures. Again, selection criteria were applied manually and each event
processed individually. This has worked very well in both environments; however, it is hugely time consuming
and difficult to keep the selection process completely consistent; separate authors may well select marginally
different subsets of events.

Some studies have begun to introduce some degree of automation to the process of plasmoid identification,
e.g., for locating periods when the north-south component of the magnetic field is enhanced above back-
ground levels [Vogt et al., 2010; Jackman et al., 2014] or to find significant deflections of the field [Smith et al.,
2016]. Automated techniques have also been used to identify magnetopause flux transfer events (FTEs) via
bipolar field deflections [e.g., Kawano and Russell, 1996], albeit still requiring manual confirmation. Karimabadi
et al. [2007] introduced a data mining technique (MineTool) and later applied it to locate FTEs [Karimabadi
et al., 2009], using a combination of magnetic field and plasma data. Recently, Malaspina and Gosling [2012]
refined a technique to identify rotational discontinuities in the STEREO solar wind data using the gradient of
the magnetic field (the method was initially developed by Vasquez et al. [2007]). These techniques are well
designed to pick out large scale rotations of a single field component. Flux rope signatures, however, are
complex and require coordinated changes in multiple field components.

We present a fully automated technique designed to identify in situ observations of linear (constant 𝛼)
force-free magnetotail flux ropes in spacecraft magnetometer data. The method includes several widely used
analysis methods, which when combined consistently identify flux ropes signatures. The automation both
reduces the subjectivity of flux rope surveys and enables the application of Minimum Variance Analysis (MVA)
and force-free model fitting to large ensembles of flux ropes.

The technique has been developed using MESSENGER magnetometer data; however, it could be applied to
other data sets with some adaptation. Below we summarize the dataset used, the expected magnetic field
signature in the data and the flux rope model selected. The process is then discussed with reference to an
example detection and several trial intervals. Assumptions and potential adaptations are then discussed.

2. Data, Signatures, and Model
2.1. Data
The method was developed using magnetometer data from the MESSENGER (MErcury Surface, Space
ENvironment, GEochemistry, and Ranging) spacecraft [Solomon et al., 2007; Anderson et al., 2007]. Data with
a cadence of 20 Hz were used; the short timescales of flux ropes (∼0.74 s [DiBraccio et al., 2015]) necessitate
the use of high-resolution data. MESSENGER orbited Mercury from 18 March 2011 to 30 April 2015. During
this time it performed highly inclined, eccentric orbits with a period of ∼12 h (later reduced to ∼8 h). This
orbit caused MESSENGER to make approximately vertical cuts through the magnetotail plasma sheet sev-
eral times a day during certain seasons. It is within ∼25 of these plasma sheet crossings that the process was
tested and developed. These crossings are located in the near-Mercury tail, close to midnight in the tail plasma
sheet. Orbits were carefully selected to ensure that the detections were related to flux ropes and not to other
processes that occur closer to the magnetopause.

The magnetometer data were used in the aberrated Mercury-Solar-Magnetospheric (henceforth MSM) coor-
dinate system. In this Cartesian system the z axis (ẐMSM) is aligned with the dipole axis pointing north, the
x direction (X̂MSM) traces the Mercury-Sun direction, and the y axis (ŶMSM) completes the right-handed set.
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At Mercury the dipole and rotational axes are approximately aligned; however, the magnetic equatorial plane
(described by X̂MSM and ŶMSM) is offset north from the planet’s geometrical center by ∼0.2 RM [Anderson et al.,
2011]. The magnetic field data were corrected for solar wind aberration (aberrated coordinates are indicated
with “′” notation). This was accomplished using the local orbital velocity of Mercury and assuming a solar wind
velocity of 425 km s−1.

2.2. Magnetotail Flux Rope Signatures
Previous studies have found that flux ropes largely lie in the X̂-Ŷ plane [Slavin et al., 2003a], generally with their
axis in the ±Ŷ direction, traveling in the ±X̂ direction (planetward or tailward) due to the prevailing tail con-
figuration [DiBraccio et al., 2015]. If a flux rope were to pass directly over the spacecraft with this approximate
orientation and velocity, then a magnetometer would observe: a bipolar variation in BZ , a local maximum in
BY (corresponding to the strong core field along the axis), and a peak in the total field magnitude (|B|).
If the spacecraft passes directly through the center of a flux rope, then the deflection in BMSM

Z will be symmet-
rical and bipolar. However, if the spacecraft’s passage through the flux rope is offset then the signature will
be asymmetric and potentially unipolar. This is especially the case if only one “hemisphere” of the structure is
encountered (i.e., the planetward or tailward side). We direct the reader to diagrams in Borg et al. [2012] and
DiBraccio et al. [2015] showing the effect that trajectory can have on the magnetic signature of a plasmoid.
The relative trajectories displayed are caused by a combination of the motion of the spacecraft and the cur-
rent sheet. Differentiating between trajectories with large impact parameters and the traveling compression
regions that surround the plasmoids as they interact with the lobes [Slavin et al., 1993] will be accomplished
using comparison to a model.

2.3. Force-Free Model
The force-free model represents a relatively stable configuration where no pressure gradients are assumed to
be present (∇P = 0). In this model the magnetic pressure (B2∕2𝜇0

) from the strong axial field is balanced by
the magnetic tension force (B2∕2𝜇0Rc

), where 𝜇0 is the magnetic permeability of free space and Rc is the radius
of curvature of the helical field. This corresponds to the lowest-energy state of helical magnetic fields and
is therefore perhaps the end point of the evolution of the flux rope morphology [Priest, 1990]. Under these
conditions, Lepping et al. [1990] showed that using the Lundquist [1950] solutions, the field inside the flux rope
can be written in cylindrical coordinates as

Baxial = B0J0(𝛼r′) (1)

Bazimuthal = B0HJ1(𝛼r′) (2)

Br = 0 (3)

where B0 is the peak axial field strength, J0(𝛼r′) and J1(𝛼r′) are the zeroth- and first-order Bessel functions, and
H is the helicity or handedness of the flux rope (H = ±1). The Bessel functions depend on the radial distance
from the axis of the flux rope (r′) and 𝛼. With 𝛼 set to 2.4048 [Burlaga, 1988], and setting the impact parameter:
r′ = r∕R0 (with R0 being the radius of the flux rope) the model represents a flux rope with a completely axial
field at the center (Bazimuthal(r = 0) = 0) and an entirely azimuthal field at the edge ((Baxial(r = R0) = 0)).
This formulation represents a cylindrically symmetric, linear (constant 𝛼) force-free flux rope. The model has
been successfully applied to interplanetary magnetic clouds [Lepping et al., 1990], FTEs at the magnetopause
of Earth [Eastwood et al., 2012a], Saturn [Jasinski et al., 2016], and Mercury [Imber et al., 2014] as well as flux
ropes in the magnetotails of Earth [Lepping et al., 1995, 1996; Slavin et al., 2003a, 2003b], Mars [Eastwood et al.,
2012b], and Mercury [DiBraccio et al., 2015].

The assumption that the flux rope is linearly (constant 𝛼) force free and cylindrically symmetric will limit the
number of flux ropes that are identified by the technique. As mentioned above, the model is likely to better
represent well developed flux ropes. Flux ropes encountered soon after their formation are unlikely to have
evolved to the stable equilibrium described by the model. Implications of this assumption are discussed in
section 5.1.

3. Method

The technique, described below, uses three steps to locate quasi force-free flux ropes within spacecraft mag-
netometer data. The combination of all three ensures fully automated, rigorous, and repeatable flux rope
detections.
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3.1. Baseline Crossing and Peak Detection
The aim of the first step in the technique is to find significant deflections in the BZ component of the field
concurrent with peaks in the BY′ or |B| components of the field. This field signature is discussed in section 2.2
as being the expected result of an equatorial magnetotail flux rope traveling sunward (or tailward) directly
over the spacecraft.

This step is similar to the method developed by Smith et al. [2016] and is illustrated in Figure 1. Once identified,
candidates will be further analyzed and ultimately accepted or rejected based on the results of the subsequent
steps. The algorithm first takes a running average of the BZ component of the field within a 1 min sliding
window. The window size was selected specifically for the Mercury data as it was found to trace the “long”
term changes in the field but ignore sharp changes in the field (e.g., flux rope signatures). The running average
forms a new baseline through which any deflections of the field must pass. Every instance where BZ passes
through this baseline, henceforth referred to as a crossing, is recorded for further analysis.

To investigate whether the deflection of the field is significant, the method then searches for local maxima
and minima of BZ . Defining the event using the local north-south maxima of the field attempts to find the
duration that would be chosen by eye, following the work of Slavin et al. [1993], and more recently Jackman
et al. [2014], Vogt et al. [2014], DiBraccio et al. [2015], and Smith et al. [2016]. A period extending 1.25 s either
side of the crossing (vertical grey bars in Figure 1) is examined to find these local extrema. This time window
was chosen in order to preferentially select the fluctuations interpreted as flux ropes; DiBraccio et al. [2015]
reported an average duration of 0.74 s.

If the deflection is southward, i.e., the value of BZ decreases, then all peaks in the field (where the field is larger
than at adjacent points) up to 1.25 s before the crossing are selected as potential starts. On the other side,
after the crossing, all local minima of the field (where the field is smaller or more negative than at adjacent
points) up to 1.25 s after the crossing are selected as potential ends.

All possible combinations of potential starts and ends are then examined, with the aim of selecting the dura-
tion representing the largest and smoothest fluctuation. First-order polynomials are interpolated between
the various pairs. The interpolations are then compared with the data using the coefficient of determination,
given by

r2 = 1 −
∑N

0

(
Bt

Z − ft

)2

∑N
0

(
Bt

Z − B̄Z

)2
(4)

The start and end pair is located at t = 0 and t = N, respectively. Bt
Z is the value of BZ at the point t, B̄Z is the

average of BZ over all points included. Finally, ft is the value of the interpolation at time t. If all the data points
lie precisely on the polynomial, this would yield an r2 value of 1. The grey, red, and green lines on Figure 1
show the possible interpolations for the example event.

If the value of r2 is less than 0.9 (e.g., as for the grey lines in Figure 1), and therefore the polynomial represents
a poor fit to the data, then the start/end pair is discarded. The magnitude of the deflection, given by

ΔBZ = B0
Z − BN

Z (5)

is then evaluated for all pairs for which 0.9 ≤ r2 ≤ 1 (the green and red lines on Figure 1) using equation (5)
(B0

Z and BN
Z being the value of the BZ component of the field at the start and end, respectively). The start/end

pair with the largest absolute value of ΔBZ is then selected, defining the event duration, shown by the green
line in Figure 1. The method defines the limits of the event, shown by the vertical green bars in Figure 1. In
this case the limits well match those that may have been selected by eye.

The magnitude of the deflection (|ΔBZ|) is then compared to the standard deviation of the field (𝜎BZ
), requiring

that |ΔBZ|
𝜎BZ

≥ 1 (6)

where 𝜎BZ
is calculated for the same 1 min sliding window as the average of BZ . If equation (6) is satisfied, then

the deflection is preliminarily accepted. This threshold is relatively low; however, the aim of this step is to find
all possible deflections, so they may be evaluated by the following methods.

The event duration identified is then inspected for local peaks in BY′ or |B| using wavelet analysis. Figure 1
demonstrates this step. The green vertical bars indicate event duration as selected by the previous step.
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Figure 1. An example flux rope detection. (a, b, d, and e) The magnetic field in aberrated MSM coordinates. The grey vertical bars on Figure 1d indicate the
maximum length of the event (±1.25 s). The faint grey lines show the first-order polynomials interpolated between the potential start/stop pairings that have a
value of r2 < 0.9. The red lines indicate those interpolated lines with an r2 ≥ 0.9 (calculated from equation (4)). The green line shows the final interpolated line
selected; with an r2 ≥ 0.9 and the largest value of ΔBZ (from equation (5)). The green vertical lines indicate the corresponding selected start and end to the
deflection, respectively. (c and f) The Continuous Wavelet Transform (CWT) of |BY′ | and |B|, respectively (with the Ricker wavelet). The color bar indicates the
value of the CWT coefficient, while the vertical axis shows the wavelet scale factor. The red stars indicate the locations of the significant peaks in the CWT.
The red dashed lines then show the locations of the peaks in the panel of the relevant magnetic field component.

Figures 1c and 1f show the results of the Continuous Wavelet Transform (CWT) when applied to |BY′ | and |B|
(approximately Figures 1b and 1e), respectively, using the Ricker (or Mexican Hat/Marr) wavelet [Daubechies,

1992]. The Ricker wavelet is the normalized second derivative of a Gaussian function, importantly featuring

a central peak. The CWT and Ricker wavelet combination are commonly used in various fields for pattern

matching and peak detection [e.g., Carmona et al., 1998; Du et al., 2006]. Figures 1c and 1f display time on

the horizontal axis and wavelet scale on the vertical axis. The colors indicate the value of the CWT coefficient:

strongly positive where the wavelet (with a given scale) matches well with a peak in the data. Local peaks in

the CWT coefficient are selected, and those greater than an empirical threshold (designed to preferentially

select peaks with a small scale factor), are indicated with red stars. The red dashed lines then indicate the

positions of these peaks in the panel of the corresponding component of the field.

If significant peaks are identified in either BY′ or |B| (Figures 1b or 1e) within the duration indicated by the

green bars then the deflection is accepted. Figure 1 shows an event for which peaks have been identified in

both panels. However, only one peak is required as they can be missed by the CWT technique.

This combination of techniques recreates the by-eye selection criteria used by several previous studies [e.g.,

Slavin et al., 2003a; DiBraccio et al., 2015].

It is possible that the combination of BZ deflection and peak in BY′ or |B| could be caused by other magnetic

structures within the magnetotail. To remove such signatures, criteria are then placed on the results of both

minimum variance analysis (MVA) and comparison to a model (sections 3.2 and 3.3).
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3.2. Minimum Variance Analysis
The second stage of the process involves Minimum Variance Analysis (MVA); rotating the magnetic field data
into a local coordinate system to further check for flux rope-like characteristics. If the magnetic signature is
caused by a close encounter with a force-free flux rope, then it may be expected that the new coordinate
system is distinct and that a clear rotation of the field is apparent (as will be discussed below) [Slavin et al.,
1989; Briggs et al., 2011; DiBraccio et al., 2015].

MVA was first developed to find the normal to magnetic discontinuities (e.g., current layers) from magnetome-
ter data [Sonnerup and Cahill, 1967]. However, the technique has also been used to determine the orientation
and structure of flux ropes (if the spacecraft passes sufficiently close to the axis and the flux rope satisfies the
force-free approximation) [e.g., Sibeck et al., 1984; Elphic et al., 1986; Slavin et al., 1989; Moldwin and Hughes,
1991; Xiao et al., 2004].

MVA outputs three eigenvectors, representing the minimum, intermediate, and maximum variation directions
(e1, e2, and e3 respectively), and three corresponding eigenvalues (𝜆1, 𝜆2, and 𝜆3). The three eigenvalues are
often quoted in two ratios: the maximum to intermediate (𝜆3∕𝜆2

) and the intermediate to minimum (𝜆2∕𝜆1
). The

relative size of the eigenvalues describes how well the new coordinate system is defined (low ratios suggest
the axes are more degenerate [Khrabrov and Sonnerup, 1998; Sonnerup and Scheible, 1998]), so we require for
event acceptance that both of the ratios are greater than five. Briggs et al. [2011], at Mars, placed a limit on
𝜆2∕𝜆1

of 8, while DiBraccio et al. [2015] placed no limits on either ratio and found 𝜆3∕𝜆2
as low as 3, and 𝜆2∕𝜆1

always less than 12. DiBraccio et al. [2015] found that placing thresholds did not change their results and so
chose to keep the larger sample for statistical reasons. For this study a threshold is used to help exclude poor
quality events (as no manual preselection is performed). Requiring both ratios to be greater than 5 means all
three eigenvectors are distinct. No criterion is placed upon the direction of the eigenvectors.

Additionally, the start and end times are varied (from those identified in section 3.1) by ±10% of the duration.
MVA is performed on all the possible combinations of starts and ends this allows. The amount by which the
maximum eigenvalue ratio changes is then calculated by the following:

max
(
𝜆3 ∕𝜆2

)
∕

mean
(
𝜆3 ∕𝜆2

) ≤ 1.75 (7)

If the magnetic structure is well defined, and analysis stable, then the eigenvalue ratio should not change by a
large amount, and equation (7) should be satisfied. The limit of 1.75 was determined empirically from running
the analysis on the test current sheet crossings.

The pair for which the product of 𝜆3∕𝜆2
and 𝜆2∕𝜆1

is greatest is then selected, attempting to maximize both
ratios (and thereby select the most distinct eigenvectors). Often, this is the same as the duration selected in
the previous step of the pipeline, or differs by only one data point.

Finally, a clear rotation of the field in a hodogram of the intermediate and maximum field directions is
expected when the spacecraft passes through a flux rope. To evaluate this property, an ellipse is fit using least
squares minimization to the hodogram trace following the method of Fitzgibbon et al. [1999]. The quality of
the fit to the data is evaluated using a modified r2 (equation (8)):

r2 = 1 −
∑N

i=0 a2
i∑N

i=0 c2
i

(8)

where the summations are over all data points (i = 0 to N), ai is the radial distance between the point i and
the ellipse (point P), and ci is the radial distance between the center and the point P on the ellipse. If all points
lie directly on the ellipse, then r2 = 1. We require that the fit is of a good quality: i.e., r2 ≥ 0.98. The ellipse
fitting technique requires at least four data points; this imposes a lower limit to the duration of flux rope that
can be identified depending on the resolution of the data used. With the 20 Hz MESSENGER data, this is 0.2 s.

In addition, poor detections are characterized by highly eccentric ellipse fits; therefore, for acceptance, e ≤ 0.9.
The ellipse fitting technique is known to have a bias for producing ellipses with low eccentricities [Fitzgibbon
et al., 1999]; therefore, the fit should meet the criteria if possible.

Figure 2 shows the results of running MVA on the flux rope shown in Figure 1. The expected flux rope char-
acteristics can be seen; little variation in B1 (the minimum variance direction), a peak (the core field) in B2,
and an approximately bipolar signature in B3 (the maximum variance direction). If the spacecraft had passed
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Figure 2. Results of the MVA analysis on the example flux rope shown in Figure 1. The magnetic field is shown in the
MVA coordinate system, where B1, B2, and B3 are the field components in the minimum, intermediate, and maximum
variance directions, respectively. Hodograms of the field are also shown. The hodogram displaying B2–B3 (Figure 2f ) is
overplotted with the result of the ellipse fitting in green (described in section 3.2); the green dot is the center of the
fitted ellipse.

through the center of the flux rope, then B1 would be 0; B1 increases in magnitude as the impact parameter
increases. The corresponding eigenvalue ratios are 𝜆3∕𝜆2

= 13.68 and 𝜆2∕𝜆1
= 7.22, with a calculated variation

in the maximum to intermediate ratio of 1.383. These values demonstrate a well defined MVA coordinate sys-
tem with distinct eigenvectors. The ellipse in the B2–B3 hodogram is a good fit (r2 = 0.996) and is not highly
eccentric (e = 0.849).

3.3. Force-Free Flux Rope Fitting
The third and final step of the pipeline attempts to fit the data to a model flux rope. Not only does this provide
another set of criteria to exclude poor quality signatures but also allows an estimation of the core field and
proximity of the spacecraft to the flux rope axis. The implications of the choice of model are discussed in
section 5.1.

The aberrated magnetometer data, within the region identified in section 3.2, is rotated into MVA coordinates
and normalized. From there it is transformed into flux rope axial and azimuthal coordinates. The intermediate
variance direction is taken to correspond to the axial direction while the azimuthal direction is composed
of a combination of the minimum and maximum variance directions. This implicitly assumes that the MVA
technique has correctly located the axial direction. This is a good assumption at small impact parameters;
however, it can be shown to become less valid as the impact parameter increases. Using the force-free model,
an impact parameter of 0.5 R0 results in an angular difference between the intermediate direction and axial
direction of ∼20∘ [Xiao et al., 2004].

The modeled magnetic field of the flux rope, shown in equations (1) and (2), is normalized and computed for
impact parameters between 0 and 0.95 (Impact Parameter = r∕R0). The results are then compared to the data
using a modified 𝜒2 (𝜒2

1 ), shown in equation (9), as in DiBraccio et al. [2015]:

𝜒2
1 =

∑((
BData

Axial − BModel
Axial

)2 +
(

BData
Azimuthal − BModel

Azimuthal

)2
)

N
(9)
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where the sum is over all N data points, BData
Axial and BData

Azimuthal are the normalized axial and azimuthal compo-
nents of the field and BModel

Axial and BModel
Azimuthal are the normalized axial and azimuthal results of the model. The

model is compared to the MVA duration defined in section 3.2; however, the fit is allowed to ignore up to
the first and last 20% of the data points if this provides a better fit. This flexibility is somewhat analogous to
Slavin et al. [2003a] allowing the time of closest approach to vary in their fitting. The impact parameter, and
duration, with the smallest 𝜒2

1 is then selected as the best fit. For the flux rope in Figures 1 and 2 the best fit
𝜒2

1 (of 0.062) was obtained at an impact parameter of 0.33 R0.

Once the best fit to the normalized data has been computed, the result is rotated back into MVA coordinates.
Another measure of 𝜒2 is then evaluated comparing the three-dimensional fit with the data; 𝜒2

2 is shown in
equation (10) (similar to that used by Lepping et al. [1990]):

𝜒2
2 =

∑(
(BData

1 − BModel
1 )2 + (BData

2 − BModel
2 )2 + (BData

3 − BModel
3 )2

)
3N − n

(10)

where the sum is over all N data points; the differences between all three normalized minimum variance com-
ponents of the field (as defined in section 3.2) and the model results are calculated and squared. The factor
of n here represents the number of free parameters in the fit (taken to be four). For the example flux rope
(in Figures (1) and (2)) the value of 𝜒2

2 calculated was 0.048. The peak axial field calculated by the model is
then scaled to equal the peak axial field found in the MVA analysis to provide an estimate of B0: the core field
strength. With the scaling completed, the result can be rotated back into MSM coordinates.

With the data compared to the model results we place requirements both on the quality of the fit (𝜒2) and
the best fit impact parameter (IP). If the IP is larger than 0.5 R0 then the MVA technique should be less able to
distinguish the axial orientation, and so the events are rejected. In addition, we require that either 𝜒2

1 or 𝜒2
2 is

less than 0.15 (so the flux rope can be well modeled as linearly force free). Normally, the two values of 𝜒2 are
approximately the same.

4. Application

To test the efficacy of the method, it has been applied to the same data set as that previously investigated by
DiBraccio et al. [2015]. During 30 MESSENGER magnetotail current sheet encounters, between 2011 and 2013,
DiBraccio et al. [2015] identified a total of 49 flux ropes. The three-step process independently reidentifies
eight of these. Nineteen of the flux ropes identified by DiBraccio et al. [2015] do not possess greater than 1𝜎
deflections of the field in the BZ component and so are not located by the first step (though they do exhibit
significant peaks in BY and |B|). The remaining flux ropes that are not selected by the method are split evenly
between those that did not meet the required MVA criteria and those that did not fit the force-free model to
the required accuracy (or did but for impact parameters ≥ 0.5 R0).

Figure 3 shows the result of the application of the method to two example passages of MESSENGER through
the Hermean cross-tail current sheet on 23 and 24 November 2011. The magnetic field is provided in aberrated
MSM coordinates. The flux ropes identified by this method are shaded green. Those identified by DiBraccio
et al. [2015] and missed by our method are highlighted in red. Figure 3 (top), showing data from 23 November
2011, was recorded during a period of high-solar wind dynamic pressure (due to the impact of a coronal mass
ejection) [Slavin et al., 2014]. This caused compression of the dayside magnetopause and very high rates of
reconnection on the dayside. Correspondingly, a high rate of flux rope formation and ejection is observed.
One flux rope identified by DiBraccio et al. [2015] is not recovered around 09 ∶ 25 ∶ 40 due to a large variation
in the MVA eigenvalues observed (violating the criterion in equation (7)). In Figure 3 (bottom) a flux rope
identified by DiBraccio et al. [2015] is not selected due to a large best fit impact parameter (≥ 0.5 R0).

To further validate the technique, it was applied to data from Earth’s magnetotail: from the Cluster [Escoubet
et al., 1997; Balogh et al., 2001; Laakso et al., 2010] and Geotail [Mukai et al., 1994] missions. The method was
tested to check if it could recover events from the figures of previous studies. Adapting it for the different
timescales, the method identifies both flux ropes shown by Slavin et al. [2003a]. Three out of four flux ropes
shown by Borg et al. [2012] are initially located, though two of these are then discarded as they do not fit the
model satisfactorily at the required impact parameters. Both flux ropes shown by Zhao et al. [2016] are located;
however, one is later discarded as it does not sufficiently fit the model.
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Figure 3. Two example MESSENGER passages through the Hermean magnetotail current sheet. Magnetic field is provided in aberrated MSM coordinates. Positive
force-free flux rope detections by the method are indicated with green shading. Flux ropes identified by DiBraccio et al. [2015] but missed by this technique are
highlighted in red.
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5. Discussion

The method described above represents an automated, consistent method of identifying in situ encoun-
ters with cylindrically symmetric, linear (constant 𝛼) flux ropes within spacecraft magnetometer data. In the
section below several key assumptions that the process makes are outlined and potential future adaptations
are discussed.

5.1. Assumptions
The first major assumption made by the process is that the MVA process has correctly determined the ori-
entation of the flux rope. This has been shown in the past to be true in some situations, and to be a better
approximation when the spacecraft passes close to the axis [Xiao et al., 2004]. If MVA fails to correctly locate
the axial direction, then the event will appear to be a poor fit to the model and the flux rope will probably not
be identified.

Second, the force-free model applied assumes that the flux rope is cylindrically symmetrical. It is probable that
most flux ropes are in some way distorted through interactions with the surrounding field and plasma. There
are alternative models that allow for some deformation, for example, those that allow an elliptical or oblate
flux rope [e.g., Hidalgo et al., 2002 and Vandas and Romashets, 2003]. While these models allow more accurate
fits of distorted flux ropes, they also introduce more free parameters. The purpose of the fit is to provide
additional criteria to rule out poor flux rope candidates and allow the estimation of some key parameters. More
complex models could be subsequently fit to the successful candidate flux ropes to discern more information
about their structure.

Finally, the chosen model assumes that the flux rope is (constant 𝛼) force free; this will result in the exclusion
of some flux ropes from the analysis. In fact, as mentioned in section 2.3, the model is likely to be a poor fit
to flux ropes that are encountered soon after their formation. This will almost certainly introduce a selection
effect. However, without access to high-resolution plasma data any model that includes the internal plasma
pressure within a flux rope would be poorly constrained. This could result in the inclusion of poor quality
events if the plasma parameters that are assumed are not representative of the true environment.

5.2. Adaptation
The analysis outlined above could be applied to other large data sets and used to create a self-consistent cat-
alog of quasi force-free flux ropes. If used at other planets, the times scales used would require adjustment;
i.e., the maximum length of event and duration over which the averages are calculated. Additionally, if simul-
taneous high-resolution plasma data are available, then this could be used to create additional criteria (or
modify existing ones). Furthermore, such plasma data would also allow more complex analysis techniques to
be employed (e.g., the method of Rong et al. [2013] for determining axis orientation). Finally, the method could
be applied to virtual spacecraft simulation results, which can shed light on the limitations of in situ spacecraft
detections.

6. Conclusion

We have presented a completely automated method of locating cylindrically symmetric, linear (constant 𝛼)
flux ropes from spacecraft magnetometer data. The analysis initially identifies significant (ΔBZ ≥ 1𝜎) deflec-
tions in the north-south component of the magnetic field concurrent with peaks in the dawn-dusk com-
ponent or total field. These candidates are then inspected using MVA to select those for which it is able to
determine a well defined coordinate system with a clear rotation of the field. Those identified are then com-
pared to a force-free model and the quality of the fit evaluated. The fitting of a model to the magnetic signature
allows both the rejection of poor quality events (those likely due to other processes) and the determination
of some of the physical parameters of the flux rope (i.e., the radius of the flux rope and core field strength).
The pipeline has been tested on data from the MESSENGER mission and successfully relocates several previ-
ously studied flux ropes from DiBraccio et al. [2015]. It has also been applied to Earth data from Geotail and
Cluster and recovers some prominent examples from the literature [Slavin et al., 2003a; Borg et al., 2012; Zhao

et al., 2016]. The method is ideal for application to large data sets whose manual inspection would be time
consuming and include unknown biases.
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