806 research outputs found

    Wide-field weak lensing by RXJ1347-1145

    Full text link
    We present an analysis of weak lensing observations for RXJ1347-1145 over a 43' X 43' field taken in B and R filters on the Blanco 4m telescope at CTIO. RXJ1347-1145 is a massive cluster at redshift z=0.45. Using a population of galaxies with 20<R<26, we detect a weak lensing signal at the p<0.0005 level, finding best-fit parameters of \sigma_v=1400^{+130}_{-140} km s^{-1} for a singular isothermal sphere model and r_{200} = 3.5^{+0.8}_{-0.2} Mpc with c = 15^{+64}_{-10} for a NFW model in an \Omega_m = 0.3, \Omega_\Lambda = 0.7 cosmology. In addition, a mass to light ratio M/L_R =90 \pm 20 M_\odot / L_{R\odot} was determined. These values are consistent with the previous weak lensing study of RXJ1347--1145 by Fischer and Tyson, 1997, giving strong evidence that systemic bias was not introduced by the relatively small field of view in that study. Our best-fit parameter values are also consistent with recent X-ray studies by Allen et al, 2002 and Ettori et al, 2001, but are not consistent with recent optical velocity dispersion measurements by Cohen and Kneib, 2002.Comment: accepted to ApJ, tentative publication 10 May 2005, v624

    SHELS: Testing Weak Lensing Maps with Redshift Surveys

    Full text link
    Weak lensing surveys are emerging as an important tool for the construction of "mass selected" clusters of galaxies. We evaluate both the efficiency and completeness of a weak lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R < 20.6 in the four square degree DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z < 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four the twelve convergence peaks with signal-to-noise > 3.5 correspond to clusters of galaxies with M > 1.7 x 10^14 solar masses. Four of the eight massive clusters in SHELS are detected in the weak lensing map yielding a completeness of roughly 50%. We examine the seven known extended cluster x-ray sources in the DLS field: three can be detected in the weak lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.Comment: 34 pages, 16 figures, ApJ accepte

    Discovery of a Galaxy Cluster via Weak Lensing

    Get PDF
    We report the discovery of a cluster of galaxies via its weak gravitational lensing effect on background galaxies, the first spectroscopically confirmed cluster to be discovered through its gravitational effects rather than by its electromagnetic radiation. This fundamentally different selection mechanism promises to yield mass-selected, rather than baryon or photon-selected, samples of these important cosmological probes. We have confirmed this cluster with spectroscopic redshifts of fifteen members at z=0.276, with a velocity dispersion of 615 km/s. We use the tangential shear as a function of source photometric redshift to estimate the lens redshift independently and find z_l = 0.30 +- 0.08. The good agreement with the spectroscopy indicates that the redshift evolution of the mass function may be measurable from the imaging data alone in shear-selected surveys.Comment: revised version with minor changes, to appear in ApJ

    Weak Lensing Detection of Cl 1604+4304 at z = 0.90

    Full text link
    We present a weak lensing analysis of the high-redshift cluster Cl 1604+4304. At z=0.90, this is the highest-redshift cluster yet detected with weak lensing. It is also one of a sample of high-redshift, optically-selected clusters whose X-ray temperatures are lower than expected based on their velocity dispersions. Both the gas temperature and galaxy velocity dispersion are proxies for its mass, which can be determined more directly by a lensing analysis. Modeling the cluster as a singular isothermal sphere, we find that the mass contained within projected radius R is 3.69+-1.47 * (R/500 kpc) 10^14 M_odot. This corresponds to an inferred velocity dispersion of 1004+-199 km/s, which agrees well with the measured velocity dispersion of 989+98-76 km/s (Gal & Lubin 2004). These numbers are higher than the 575+110-85 km/s inferred from Cl 1604+4304 X-ray temperature, however all three velocity dispersion estimates are consistent within ~ 1.9 sigma.Comment: Revised version accepted for publication in AJ (January 2005). 2 added figures (6 figures total

    Light-Cone Quantization of Gauge Fields

    Get PDF
    Light-cone quantization of gauge field theory is considered. With a careful treatment of the relevant degrees of freedom and where they must be initialized, the results obtained in equal-time quantization are recovered, in particular the Mandelstam-Leibbrandt form of the gauge field propagator. Some aspects of the ``discretized'' light-cone quantization of gauge fields are discussed.Comment: SMUHEP/93-20, 17 pages (one figure available separately from the authors). Plain TeX, all macros include

    Testing Weak Lensing Maps With Redshift Surveys: A Subaru Field

    Full text link
    We use a dense redshift survey in the foreground of the Subaru GTO2deg^2 weak lensing field (centered at α2000\alpha_{2000} = 16h04m44s^h04^m44^s;δ2000\delta_{2000} =43^\circ11^{\prime}24^{\prime\prime}$) to assess the completeness and comment on the purity of massive halo identification in the weak lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak lensing peaks with a signal-to-noise greater that 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. (2010) test of the Deep Lens Survey field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. (2007) for removing some contaminated peaks from the weak lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.Comment: Astrophysical Journal accepted versio

    An elusive radio halo in the merging cluster Abell 781?

    Full text link
    Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the cluster is dominated by a diffuse source located at the outskirts of the X-ray emission, which we tentatively classify as a radio relic. We detected residual diffuse emission at the cluster centre at the level of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and on the basis of simple spectral considerations we do not support their claim of a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive and merging cluster, is an intriguing case. Assuming that the residual emission is indicative of the presence of a radio halo barely detectable at our sensitivity level, it could be a very steep spectrum source.Comment: 5 pages, 4 figures, 1 table - Accepted for publication on Monthly Notices of the Royal Astronomical Society Letter

    On the effect of image denoising on galaxy shape measurements

    Full text link
    Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method, based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08 challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising.Comment: Accepted for publication in A&A. 8 pages, 5 figure

    GaBoDS: The Garching-Bonn Deep Survey -- I. Anatomy of galaxy clusters in the background of NGC 300

    Full text link
    The Garching-Bonn Deep Survey (GaBoDS) is a virtual 12 square degree cosmic shear and cluster lensing survey, conducted with the [email protected] MPG/ESO telescope at La Silla. It consists of shallow, medium and deep random fields taken in R-band in subarcsecond seeing conditions at high galactic latitude. A substantial amount of the data was taken from the ESO archive, by means of a dedicated ASTROVIRTEL program. In the present work we describe the main characteristics and scientific goals of GaBoDS. Our strategy for mining the ESO data archive is introduced, and we comment on the Wide Field Imager data reduction as well. In the second half of the paper we report on clusters of galaxies found in the background of NGC 300, a random archival field. We use weak gravitational lensing and the red cluster sequence method for the selection of these objects. Two of the clusters found were previously known and already confirmed by spectroscopy. Based on the available data we show that there is significant evidence for substructure in one of the clusters, and an increasing fraction of blue galaxies towards larger cluster radii. Two other mass peaks detected by our weak lensing technique coincide with red clumps of galaxies. We estimate their redshifts and masses.Comment: 20 pages, 16 figures, gzipped. An online postscript version with higher quality figures (3.3 MBytes) can be downloaded from http://www.mpa-garching.mpg.de/~mischa/ngc300/ngc300.ps.gz . Submitted to A&
    • …
    corecore