3,354 research outputs found

    JPL development ephemeris no. 69

    Get PDF
    Improved lunar and planetary ephemeri

    DETERMINING RELATIONSHIPS BETWEEN KINEMATIC SEQUENCING AND BASEBALL PITCH VELOCITY USING MARKERLESS MOTION CAPTURE

    Get PDF
    The purpose of this study was to determine how the timings and magnitudes of peak pelvis rotational velocity, peak trunk rotational velocity, peak elbow extension velocity, and peak shoulder internal rotation velocity affect pitch velocity. Eighty pitchers (187.2 ± 8.2cm, 89.3 ± 13.0kg, 20.1 ± 3.3yrs) had a minimum of 3 fastballs recorded and video was processed using pitchAITM. Average pitch velocity was 38.1 ± 2.5 m/s. A multilinear regression generated a significant prediction for pitch velocity (R2 = 0.368 and p \u3c 0.01). Pitcher weight (β = 0.535, p \u3c 0.001), peak pelvis rotational velocity timing (β = -0.157, p = 0.001), peak elbow extension timing (β = 0.122, p = 0.006), and peak shoulder internal rotation timing (β = -0.113, p = 0.018), were significant contributors to the multilinear model. In conclusion, player weight and their kinematic sequence metrics from pitchAITM can be significant predictors of pitch velocity

    Structural Insights from Molecular Dynamics Simulations of Tryptophan 7-Halogenase and Tryptophan 5-Halogenase

    Get PDF
    Many natural organic compounds with pharmaceutical applications, including antibiotics (chlortetracycline and vancomycin), antifungal compounds (pyrrolnitrin), and chemotherapeutics (salinosporamide A and rebeccamycin) are chlorinated. Halogenating enzymes like tryptophan 7-halogenase (PrnA) and tryptophan 5-halogenase (PyrH) perform regioselective halogenation of tryptophan. In this study, the conformational dynamics of two flavin-dependent tryptophan halogenasesPrnA and PyrHwas investigated through molecular dynamics simulations, which are in agreement with the crystallographic and kinetic experimental studies of both enzymes and provide further explanation of the experimental data at an atomistic level of accuracy. They show that the binding sites of the cofactor-flavin adenine dinucleotide and the substrate do not come into close proximity during the simulations, thus supporting an enzymatic mechanism without a direct contact between them. Two catalytically important active site residues, glutamate (E346/E354) and lysine (K79/K75) in PrnA and PyrH, respectively, were found to play a key role in positioning the proposed chlorinating agent, hypochlorous acid. The changes in the regioselectivity between PrnA and PyrH arise as a consequence of differences in the orientation of substrate in its binding site

    Assessing phytoplankton nutritional status and potential impact of wet deposition in seasonally oligotrophic waters of the Mid‐Atlantic Bight

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 3203-3211, doi:10.1002/2017GL075361.To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid‐Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon‐13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain‐stimulated new production.US National Science Foundation Grant Numbers: OCE‐1260454, OCE‐1260454, OCE‐12605742018-09-1

    Laser transit-time measurements between earth and moon with a transportable system

    Get PDF
    A high radiance, pulsed laser system with a transportable transmitting unit was used to measure the transit times of 25 ns, 10 joule, and 530 nm pulses from earth to the Apollo 15 retroreflector on the moon and back

    LDEF Interplanetary Dust Experiment (IDE) results

    Get PDF
    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude
    corecore