13,228 research outputs found

    Drive mechanism for production of simulated human breath

    Get PDF
    Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts

    Demonstration of a sterilizable solid rocket motor system

    Get PDF
    A solid propellant rocket motor containing 60.9 Kg (134-lb) of propellant was successfully static fired after being subjected to eight heat sterilization cycles (three 54-hour cycles plus five 40-hour cycles) at 125 C (257 F). The test motor, a modified SVM-3 chamber, incorporated a flexible grain retention system of EPR rubber to relieve thermal shrinkage stresses. The propellant used in the motor was ANB-3438, and 84 wt% solids system (18 wt% aluminum) containing 66 wt% stabilized ammonium perchlorate oxidizer and a saturated hydroxylterminated polybutadiene binder. Bonding of the propellant to the EPR insulation (GenGard V-4030) was provided by the use of SD-886, an epoxy urethane restriction

    Quantum-limited mass flow of liquid 3^{3}He

    Get PDF
    We consider theoretically the possibility of observing unusual quantum fluid behavior in liquid 3^{3}He and solutions of 3^{3}He in 4^{4}He systems confined to nano-channels. In the case of pure ballistic flow at very low temperature conductance will be quantized in units of 2m2/h2m^{2}/h. We show that these steps should be sensitive to increases in temperature. We also use of a random scattering matrix simulation to study flow with diffusive wall scattering. Universal conductance fluctuations analogous to those seen in electron systems should then be observable. Finally we consider the possibility of the cross-over to a one-dimensional system at sufficiently low temperature where the system could form a Luttinger liquid

    Rubidium and lead abundances in giant stars of the globular clusters M4 and M5

    Get PDF
    We present measurements of the neutron-capture elements Rb and Pb for bright giants in the globular clusters M4 and M5. The clusters are of similar metallicity ([Fe/H] = -1.2) but M4 is decidedly s-process enriched relative to M5: [Ba/Fe] = +0.6 for M4 but 0.0 for M5. The Rb and Pb abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained with MIKE on the Magellan telescope. Abundances of Y, Zr, La, and Eu were also obtained. In M4, the mean abundances from 12 giants are [Rb/Fe] = 0.39 +/- 0.02 (sigma = 0.07), [Rb/Zr] = 0.17 +/- 0.03 (sigma = 0.08), and [Pb/Fe] = 0.30 +/- 0.02 (sigma = 0.07). In M5, the mean abundances from two giants are [Rb/Fe] = 0.00 +/- 0.05 (sigma = 0.06), [Rb/Zr] = 0.08 +/- 0.08 (sigma = 0.11), and [Pb/Fe] = -0.35 +/- 0.02 (sigma = 0.04). Within the measurement uncertainties, the abundance ratios [Rb/Fe], [Pb/Fe] and [Rb/X] for X = Y, Zr, La are constant from star-to-star in each cluster and none of these ratios are correlated with O or Na abundances. While M4 has a higher Rb abundance than M5, the ratios [Rb/X] are similar in both clusters indicating that the nature of the s-products are very similar for each cluster but the gas from which M4's stars formed had a higher concentration of these products.Comment: Accepted for publication in Ap

    Suppression of Giant Magnetoresistance by a superconducting contact

    Full text link
    We predict that current perpendicular to the plane (CPP) giant magnetoresistance (GMR) in a phase-coherent magnetic multilayer is suppressed when one of the contacts is superconducting. This is a consequence of a superconductivity-induced magneto-resistive (SMR) effect, whereby the conductance of the ferromagnetically aligned state is drastically reduced by superconductivity. To demonstrate this effect, we compute the GMR ratio of clean (Cu/Co)_nCu and (Cu/Co)_nPb multilayers, described by an ab-initio spd tight binding Hamiltonian. By analyzing a simpler model with two orbitals per site, we also show that the suppression survives in the presence of elastic scattering by impurities.Comment: 5 pages, 4 figures. Submitted to PR

    Superconducting Proximity Effect and Universal Conductance Fluctuations

    Full text link
    We examine universal conductance fluctuations (UCFs) in mesoscopic normal-superconducting-normal (N-S-N) structures using a numerical solution of the Bogoliubov - de Gennes equation. We discuss two cases depending on the presence (``open'' structure) or absence (``closed'' structure) of quasiparticle transmission. In contrast to N-S structures, where the onset of superconductivity increases fluctuations, we find that UCFs are suppressed by superconductivity for N-S-N structures. We demonstrate that the fluctuations in ``open'' and ``closed'' structures exhibit distinct responses to an applied magnetic field and to an imposed phase variation of the superconducting order parameter.Comment: (4 pages, 5 figures). Corrected typos in equations, added references, changed Fig. 5 and its discussions. Phys. Rev. B, accepted for publicatio

    The applicability of measures of socioeconomic position to different ethnic groups within the UK

    Get PDF
    In this paper we seek to tease out differences in socioeconomic position between ethnic groups. There are 3 main reasons why conventional socioeconomic indicators and asset based measures may not be equally applicable to all ethnic groups: 1) Differences in response rate to conventional socioeconomic indicators 2) Cultural and social differences in economic priorities/opportunities 3) Differences in housing quality, assets and debt within socioeconomic strata

    Giant Backscattering Peak in Angle-Resolved Andreev Reflection

    Get PDF
    It is shown analytically and by numerical simulation that the angular distribution of Andreev reflection by a disordered normal-metal -- superconductor junction has a narrow peak at the angle of incidence. The peak is higher than the well-known coherent backscattering peak in the normal state, by a large factor G/G_0 (where G is the conductance of the junction and G_0=2e^2/h). The enhanced backscattering can be detected by means of ballistic point contacts.Comment: Instituut-Lorentz, Leiden, The Netherlands, 4 pages, REVTeX-3.0, 3 figure
    corecore