950 research outputs found

    Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain

    Get PDF
    Neurons and glia are generated throughout adulthood from proliferating cells in two regions of the rat brain, the subventricular zone (SVZ) and the hippocampus. This study shows that exogenous basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) have differential and site-specific effects on progenitor cells in vivo. Both growth factors expanded the SVZ progenitor population after 2 weeks of intracerebroventricular administration, but only FGF-2 induced an increase in the number of newborn cells, most prominently neurons, in the olfactory bulb, the normal destination for neuronal progenitors migrating from the SVZ. EGF, on the other hand, reduced the total number of newborn neurons reaching the olfactory bulb and substantially enhanced the generation of astrocytes in the olfactory bulb. Moreover, EGF increased the number of newborn cells in the striatum either by migration of SVZ cells or by stimulation of local progenitor cells. No evidence of neuronal differentiation of newborn striatal cells was found by three-dimensional confocal analysis, although many of these newborn cells were associated closely with striatal neurons. The proliferation of hippocampal progenitors was not affected by either growth factor. However, EGF increased the number of newborn glia and reduced the number of newborn neurons, similar to the effects seen in the olfactory bulb. These findings may be useful for elucidating the in vivo role of growth factors in neurogenesis in the adult CNS and may aid development of neuronal replacement strategies after brain damage

    Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord

    Get PDF
    The existence of multipotent progenitor populations in the adult forebrain has been widely studied. To extend this knowledge to the adult spinal cord we have examined the proliferation, distribution, and phenotypic fate of dividing cells in the adult rat spinal cord. Bromodeoxyuridine (BrdU) was used to label dividing cells in 13- to 14-week-old, intact Fischer rats. Single daily injections of BrdU were administered over a 12 d period. Animals were killed either 1 d or 4 weeks after the last injection of BrdU. We observed frequent cell division throughout the adult rodent spinal cord, particularly in white matter tracts (5-7% of all nuclei). The majority of BrdU-labeled cells colocalized with markers of immature glial cells. At 4 weeks, 10% of dividing cells expressed mature astrocyte and oligodendroglial markers. These data predict that 0.75% of all astrocytes and 0.82% of all oligodendrocytes are derived from a dividing population over a 4 week period. To determine the migratory nature of dividing cells, a single BrdU injection was given to animals that were killed 1 hr after the injection. In these tissues, the distribution and incidence of BrdU labeling matched those of the 4 week post injection (pi) groups, suggesting that proliferating cells divide in situ rather than migrate from the ependymal zone. These data suggest a higher level of cellular plasticity for the intact spinal cord than has previously been observed and that glial progenitors exist in the outer circumference of the spinal cord that can give rise to both astrocytes and oligodendrocytes

    Long-Term Follow-Up of Patients Immunized with AN1792: Reduced Functional Decline in Antibody Responders

    Get PDF
    BACKGROUND: Immunization of patients with Alzheimer's disease (AD) with synthetic amyloid-beta peptide (Abeta(42)) (AN1792) was previously studied in a randomized, double-blind, placebo-controlled phase 2a clinical trial, Study AN1792(QS-21)-201. Treatment was discontinued following reports of encephalitis. One year follow-up revealed that AN1792 antibody responders showed improvements in cognitive measures as assessed by the neuropsychological test battery (NTB) and a decrease in brain volume compared with placebo. METHODS: A follow-up study, Study AN1792(QS-21)-251, was conducted to assess the long-term functional, psychometric, neuroimaging, and safety outcomes of patients from the phase 2a study 4.6 years after immunization with AN1792. The results were analyzed by comparing patients originally identified as antibody responders in the AN1792 phase 2a study with placebo-treated patients. RESULTS: One hundred and fifty-nine patients/caregivers (30 placebo; 129 AN1792) participated in this follow-up study. Of the 129 AN1792-treated patients, 25 were classified in the phase 2a study as antibody responders (anti-AN1792 titers > or = 1:2,200 at any time after the first injection). Low but detectable, sustained anti-AN1792 titers were found in 17 of 19 samples obtained from patients classified as antibody responders in the phase 2a study. No detectable anti-AN1792 antibodies were found in patients not classified as antibody responders in the phase 2a study. Significantly less decline was observed on the Disability Assessment for Dementia scale among antibody responders than placebo-treated patients (p=0.015) after 4.6 years. Significant differences in favor of responders were also observed on the Dependence Scale (p=0.033). Of the small number of patients who underwent a follow-up MRI, antibody responders showed similar brain volume loss during the follow-up period subsequent to the AN1792 phase 2a study compared with placebo-treated patients. CONCLUSIONS: Approximately 4.6 years after immunization with AN1792, patients defined as responders in the phase 2a study maintained low but detectable, sustained anti-AN1792 antibody titers and demonstrated significantly reduced functional decline compared with placebo-treated patients. Brain volume loss in antibody responders was not significantly different from placebo-treated patients approximately 3.6 years from the end of the original study. No further cases of encephalitis were noted. These data support the hypothesis that Abeta immunotherapy may have long-term functional benefits

    Tracing of temporo-entorhinal connections in the human brain: cognitively impaired argyrophilic grain disease cases show dendritic alterations but no axonal disconnection of temporo-entorhinal association neurons

    Get PDF
    Argyrophilic grain disease (AGD), a neurodegenerative disorder, is often associated with mild to moderate Alzheimer’s disease (AD)-related pathology. The development of dementia in AGD is associated with the extent of coexisting AD-related pathology. Therefore, the question arises whether the degenerative changes in the neuronal network of demented AGD-patients represent a distinct pattern or show similar changes of disconnection as considered for AD. We were able to apply DiI-tracing in two human autopsy cases with mild AD-related pathology (controls), in one AD-patient, in one non-demented patient with advanced AD-related pathology, and in three cognitively impaired AGD-patients. DiI-crystals were injected into the entorhinal cortex. Pyramidal neurons of layers III and V of the adjacent temporal neocortex (area 35) were retrogradely marked with the tracer and analyzed. The AD case did not exhibit any retrogradely labeled neurons in the temporal neocortex. In the non-demented case with advanced AD-related pathology, the number of traced neurons was reduced as compared to that in the two controls and in the three AGD cases. In contrast, all three cognitively impaired AGD cases exhibited labeled pyramidal neurons in area 35 in an almost similar number as in the controls. However, alterations in the dendritic tree were observed in the AGD cases. These results show the existence of temporo-entorhinal connections in the adult human brain similar to those reported in animal models. Furthermore, the present study based on seven cases is the first attempt to study changes in the neuronal network in a human tauopathy with targeted axonal tracing techniques. Our findings in three cognitively impaired AGD cases suggest that AGD-related dementia constitutes a distinct disorder with a characteristic pattern of degeneration in the neuronal network

    Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study

    Get PDF
    Currently, the neuropathological diagnosis of Lewy body disease (LBD) may be stated according to several staging systems, which include the Braak Lewy body stages (Braak), the consensus criteria by McKeith and colleagues (McKeith), the modified McKeith system by Leverenz and colleagues (Leverenz), and the Unified Staging System by Beach and colleagues (Beach). All of these systems use semi-quantitative scoring (4- or 5-tier scales) of Lewy pathology (LP; i.e., Lewy bodies and Lewy neurites) in defined cortical and subcortical areas. While these systems are widely used, some suffer from low inter-rater reliability and/or an inability to unequivocally classify all cases with LP. To address these limitations, we devised a new system, the LP consensus criteria (LPC), which is based on the McKeith system, but applies a dichotomous approach for the scoring of LP (i.e., “absent” vs. “present”) and includes amygdala-predominant and olfactory-only stages. α-Synuclein-stained slides from brainstem, limbic system, neocortex, and olfactory bulb from a total of 34 cases with LP provided by the Newcastle Brain Tissue Resource (NBTR) and the University of Pennsylvania brain bank (UPBB) were scanned and assessed by 16 raters, who provided diagnostic categories for each case according to Braak, McKeith, Leverenz, Beach, and LPC systems. In addition, using LP scores available from neuropathological reports of LP cases from UPBB (n = 202) and NBTR (n = 134), JT (UPBB) and JA (NBTR) assigned categories according to all staging systems to these cases. McKeith, Leverenz, and LPC systems reached good (Krippendorff’s α ≈ 0.6), while both Braak and Beach systems had lower (Krippendorff’s α ≈ 0.4) inter-rater reliability, respectively. Using the LPC system, all cases could be unequivocally classified by the majority of raters, which was also seen for 97.1% when the Beach system was used. However, a considerable proportion of cases could not be classified when using Leverenz (11.8%), McKeith (26.5%), or Braak (29.4%) systems. The category of neocortical LP according to the LPC system was associated with a 5.9 OR (p < 0.0001) of dementia in the 134 NBTR cases and a 3.14 OR (p = 0.0001) in the 202 UPBB cases. We established that the LPC system has good reproducibility and allows classification of all cases into distinct categories. We expect that it will be reliable and useful in routine diagnostic practice and, therefore, suggest that it should be the standard future approach for the basic post-mortem evaluation of LP

    Upregulation of mGlu2 receptors via NF-kB p65 acetylation is involved in the proneurogenic and antidepressant effects of acetyl-L-carnitine

    Get PDF
    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-kappa B p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-kappa B pathway, and in particular by p65 acetylation, and subsequent NF-kappa B-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressant
    corecore