80 research outputs found

    Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?

    Get PDF
    The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G2 assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G2 scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (⩽50 years, 1.32 breaks per cell, 38%) and in the non- and light smoking patient group (⩽10 pack-years, 1.28 breaks per cell, 46%). In conclusion, enhanced chromosomal radiosensitivity is a marker of genetic predisposition to head and neck cancer, and the genetic contribution is highest for oral cavity and pharynx cancer patients and for early onset and non- and light smoking patients

    Realising the European network of biodosimetry: RENEB-status quo

    Get PDF
    Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed

    Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    Get PDF
    The radiation-induced "bystander effect" (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies

    Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)

    Get PDF
    Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy

    Get PDF
    Background: Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence. Methods: ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362. Findings: Between Jan 15, 2008, and Dec 31, 2020, 3625 patients in 130 centres were randomly allocated, 1811 to CAS and 1814 to CEA, with good compliance, good medical therapy and a mean 5 years of follow-up. Overall, 1% had disabling stroke or death procedurally (15 allocated to CAS and 18 to CEA) and 2% had non-disabling procedural stroke (48 allocated to CAS and 29 to CEA). Kaplan-Meier estimates of 5-year non-procedural stroke were 2·5% in each group for fatal or disabling stroke, and 5·3% with CAS versus 4·5% with CEA for any stroke (rate ratio [RR] 1·16, 95% CI 0·86–1·57; p=0·33). Combining RRs for any non-procedural stroke in all CAS versus CEA trials, the RR was similar in symptomatic and asymptomatic patients (overall RR 1·11, 95% CI 0·91–1·32; p=0·21). Interpretation: Serious complications are similarly uncommon after competent CAS and CEA, and the long-term effects of these two carotid artery procedures on fatal or disabling stroke are comparable. Funding: UK Medical Research Council and Health Technology Assessment Programme

    Premature Chromosome Condensation Reveals DNA-PK Independent Pathways of Chromosome Break Repair

    No full text
    Cells of higher eukaryotes process double strand breaks (DSBs) in their genome using a non-homologous end joining apparatus that utilizes DNA-PK and other well characterized factors (D-NHEJ). Cells with defects in D-NHEJ, repair the majority of DSBs using a slow-repair pathway which is independent of genes of the RAD52 epistasis group and functions as a backup (B-NHEJ). Recent studies implicate DNA ligase III, PARP-1 and histone H1 in this pathway of NHEJ. The present study investigates the operation of B-NHEJ in the repair of interphase chromosome breaks visualized in irradiated G0 human lymphocytes by premature chromosome condensation (PCC). Chromosome breaks are effectively repaired in human lymphocytes, but repair is significantly compromised after treatment with wortmannin, a DNA-PK inhibitor. Despite slower kinetics, cells exposed to wortmannin rejoin the majority of ionizing radiation-induced chromosome breaks suggesting that B-NHEJ is also functional at the chromosome level. Complementation of D-NHEJ defect in wortmannin-treated lymphocytes by newly made DNA-PK is only possible under conditions of nuclear envelop break down and premature chromosome condensation, suggesting that in interphase cells the shunting of chromosome breaks from D-NHEJ to B-NHEJ is irreversible

    A New Cytogenetic Screening Methodology to Evaluate Individual Susceptibility to Radiation Sensitivity

    No full text
    Measurement of dicentric chromosomes in human lymphocytes has been applied to assess dose received by potentially overexposed people and estimate risk for health effects. Since the dicentrics in exposed people decrease with time, the introduction of fluorescent in situ hybridization (FISH) enables to measure stable translocations for biodosimetry and address old or long-term exposures. In addition, premature chromosome condensation (PCC), which enables analysis in interphase, offers several advantages for biodosimetry. However, dose and risk estimates derived using cytogenetics and adequate calibration curves are based on the assumption that all individuals respond equally to radiation. Since increased radiosensitivity has been associated with cancer proneness, there is particular interest for risk assessment at the individual level. Towards this end, the efficiency of dynamics that govern DNA repair and apoptosis, as well as the conserved cellular processes that have evolved to facilitate DNA damage recognition using signal transduction pathways to activate cell cycle arrest and preserve genomic integrity, are being investigated. Recent work in cancer cytogenetics and on the modulation of radiation effects at the chromosome level using changes in gene expression associated with proteins or factors such as caffeine, amifostine, or heat treatment during G2 to M-phase transition, reconfirmed the importance of G2-chekpoint in determining radiosensitivity and of the cdk1/cyclin-B activity in the conversion of DNA damage into chromatid breaks. G2-chromosomal radiosensitivity offers therefore a basis for the identification or testing of key genetic targets for modulation of radiation effects, and a new screening method to detect intrinsic radiosensitivity is presented

    Investigation of Bystander Effects in Hybrid Cells by Means of Cell Fusion and Premature Chromosome Condensation Induction

    No full text
    The established dogma in radiation sciences that underlies radiation protection and therapeutic applications is that radiation effects require induction of DNA damage only in cells that are directly hit by the radiation. However, extensive work during the last decade demonstrates that DNA damage responses can be detected in cells that are only bystanders. Such effects include cell killing and responses associated with DNA and chromosome damage. Here, we developed a strategy for investigating bystander effects on chromosomal integrity by premature chromosome condensation using hybrid cell formation between nontargeted human lymphocytes and targeted CHO cells or vice versa. We reasoned that signaling molecules generated in the targeted component of the hybrid will transfer to the nontargeted cell, inducing damage detectable at the chromosomal level. The results indicate that bystander cytogenetic effects between CHO and human lymphocytes cannot be detected under the experimental conditions used. This may be due either to the lack of communication of such responses between the components of the hybrid or to their abrogation by the experimental manipulations. These observations and the methodology developed should be useful in the further development of protocols for investigating bystander responses and for elucidating the underlying mechanisms. (C) 2010 by Radiation Research Societ
    corecore